

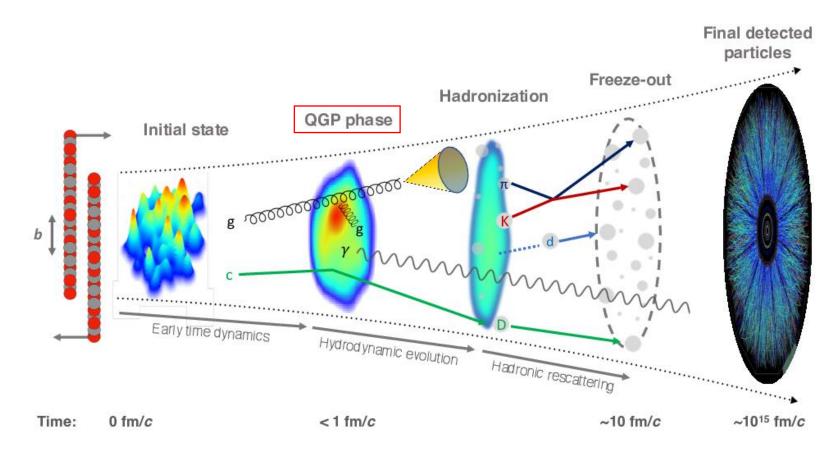
Mass hierarchy of heavy quark energy loss within a perturbative-non-perturbative transport model

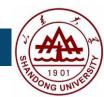
arXiv:2307.14808

Yichao Dang

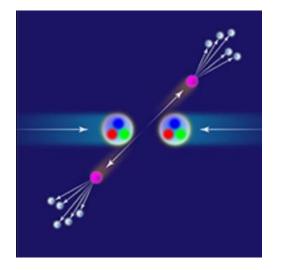
Shandong University

Collaborators: Wen-Jing Xing, Shanshan Cao, Guang-You Qin

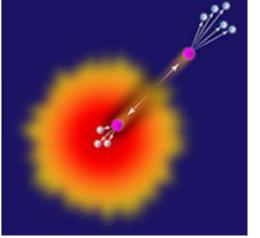

2024. 5. 16


- Introduction
- The Linear Boltzmann Transport (LBT) model
- Different mass hierarchy of heavy flavor R_{AA} between low and high p_T
- Summary

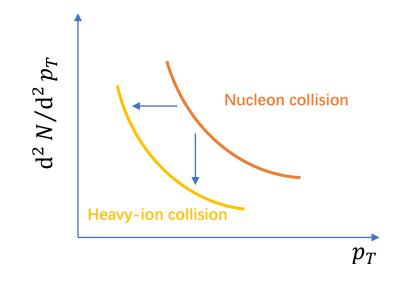
Introduction



- > Quark gluon plasma (QGP): ideal fluid, composed of deconfined quarks.
- > Heavy flavor quark: produced early and calculable with pQCD, traverse QGP with flavor conserved.
- > Both perturbative and non-perturbative calculation are needed in quark scattering.

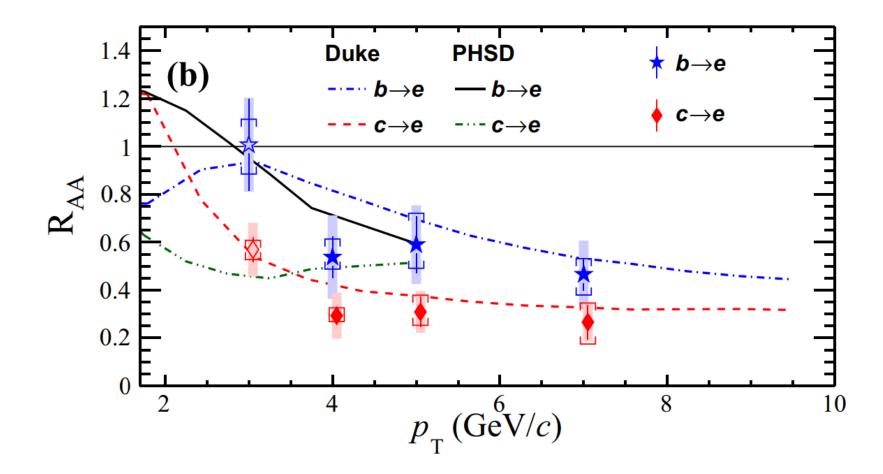

Introduction

Nuclear modification factor



Nucleon collision

Heavy-ion collision


To extract the QGP properties using heavy quarks, people compare heavy flavor observables in pp collision and heavy-ion collision.

$$R_{AA}\equiv rac{d^2N^{AA}/dydp_{\perp}}{d^2N^{pp}/dydp_{\perp}\, imes \langle N^{AA}_{coll}
angle}$$

Introduction

> R_{AA} of charm hadron decayed lepton is smaller than that of bottom, which indicates the smaller energy loss of bottom than that of charm.

[Abdallah et al. Eur. Phys. J. C 82, 1150 (2022).]

Linear Boltzmann Transport model

• The Boltzmann Transport equation:

$$\frac{\mathrm{d}}{\mathrm{d}t}f(\vec{x},\vec{p},t) = \mathrm{C}[f] = \mathrm{gain} - \mathrm{loss}$$

For channel $a + b \rightarrow c + d$, the collision term is:

 $\mathbf{C} = \int d^3 p_b d^3 p_c d^3 p_d \left[f_c f_d \omega (p_a p_b | p_c p_d) - f_a f_b \omega (p_c p_d | p_a p_b) \right]$

• Considering one single particle to traverse QGP, only the loss term is needed, and simultaneously, the integral of $f_b * \omega$ can be regarded as scattering rate Γ , which is related to the amplitude M:

$$\Gamma = -\int d^3k \, w\left(\vec{p}, \vec{k}\right) f_b \sim |M_{a+b\to c+d}|^2$$

Perturbative-non-perturbative transport model

VI 19 01 19 01 NG UNIVERSI

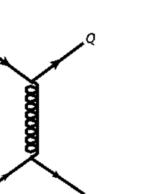
• In the elastic scattering amplitude term *M*, the Cornell-type potential is used to include both Yukawa term (perturbative term) and string term(non-perturbative term):

$$V(r) = V_{\rm Y}(r) + V_{\rm S}(r) = -\frac{4}{3}\alpha_{\rm S}\frac{e^{-m_d r}}{r} - \frac{\sigma e^{-m_s r}}{m_{\rm S}}$$

where m_d and m_s are the parameterized Debye screening mass:

$$m_d = a + bT \qquad \qquad m_s = \sqrt{a_s + b_s T}$$

Parameters α_s , a, b, σ , a_s , b_s are extracted from model to data comparison.

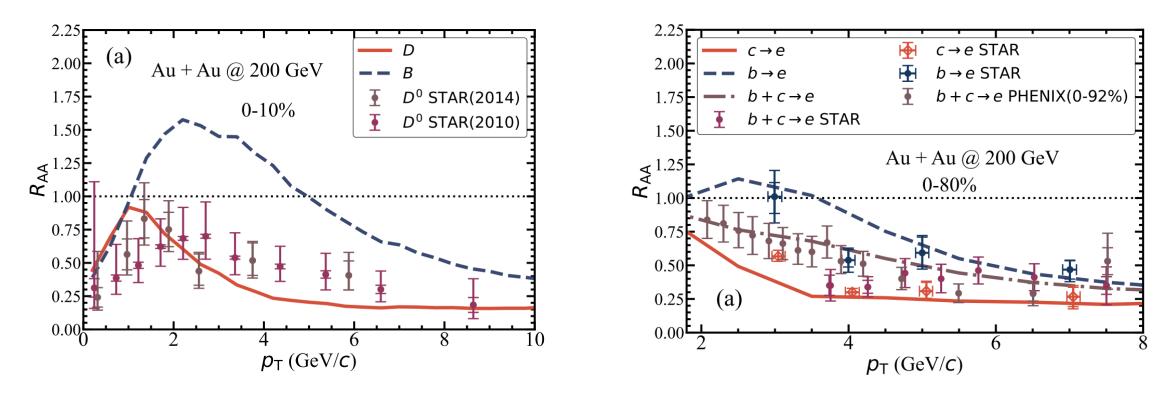

Perturbative-non-perturbative transport model

- Take Qq → Qq elastic scattering process as an example, the scattering amplitude with effective potential propagator can be written as:
 - $iM = iM_Y + iM_S = \bar{u}\gamma^{\mu}uV_Y\bar{u}\gamma^{\nu}u + \bar{u}uV_S\bar{u}u$

• If the mass of heavy quark is m_Q , and light quark is massless, the corresponding squared amplitude reads:

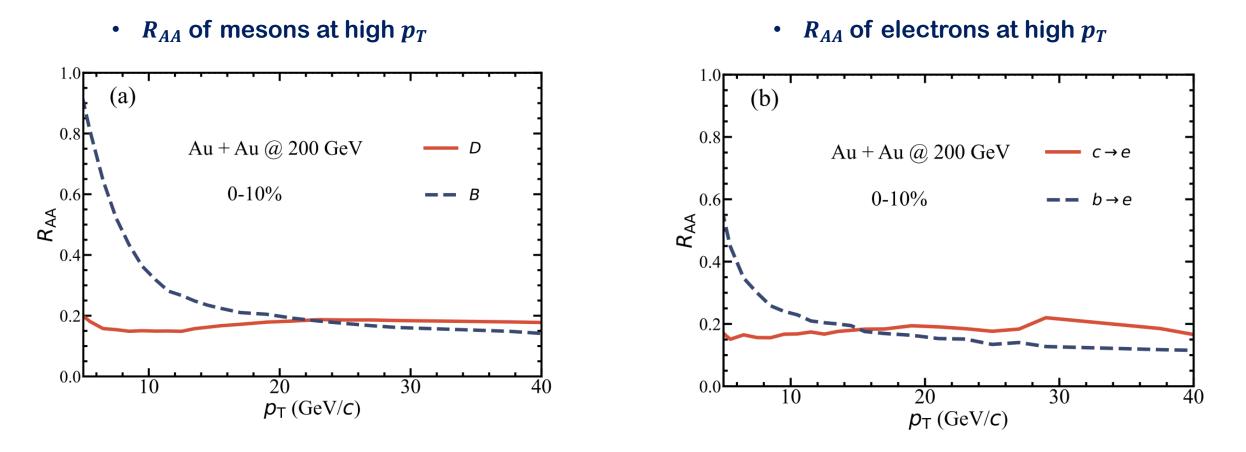
$$|\mathcal{M}_{Qq}|^{2} = \frac{64\pi^{2}\alpha_{s}^{2}}{9} \frac{(s-m_{Q}^{2})^{2} + (m_{Q}^{2}-u)^{2} + 2m_{Q}^{2}t}{(t-m_{d}^{2})^{2}} + \frac{(8\pi\sigma)^{2}}{N_{c}^{2}-1} \frac{t^{2}-4m_{Q}^{2}t}{(t-m_{s}^{2})^{4}} \cdot \prod_{r=1}^{r} \frac{1}{r} \prod_{r=1}^{r} \frac{1}{r}$$

The lighter the heavy quark is, the smaller the string term is! The higher the temperature is, the smaller the string term is!



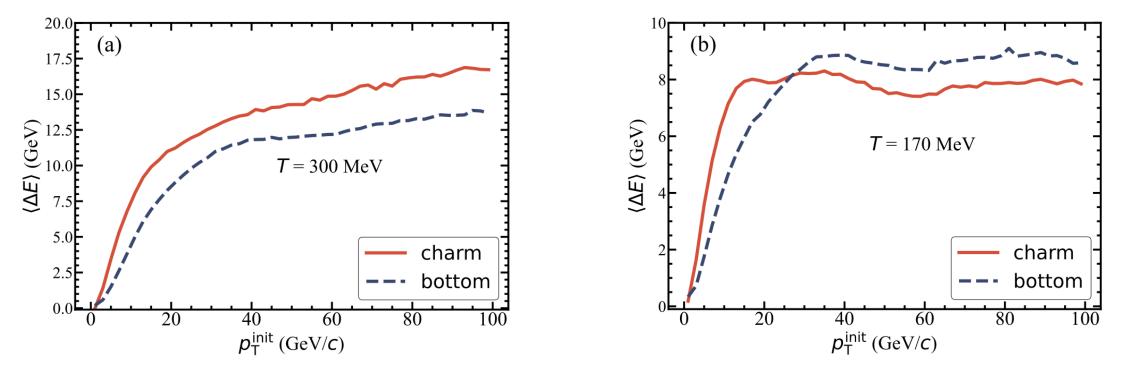
R_{AA} of hadrons and leptons at low p_T

• R_{AA} of meson


• R_{AA} of electron

> Based on our model, we plot R_{AA} vs. transverse momentum p_T for both heavy mesons and meson-decayed electrons, which can describe the experimental data.

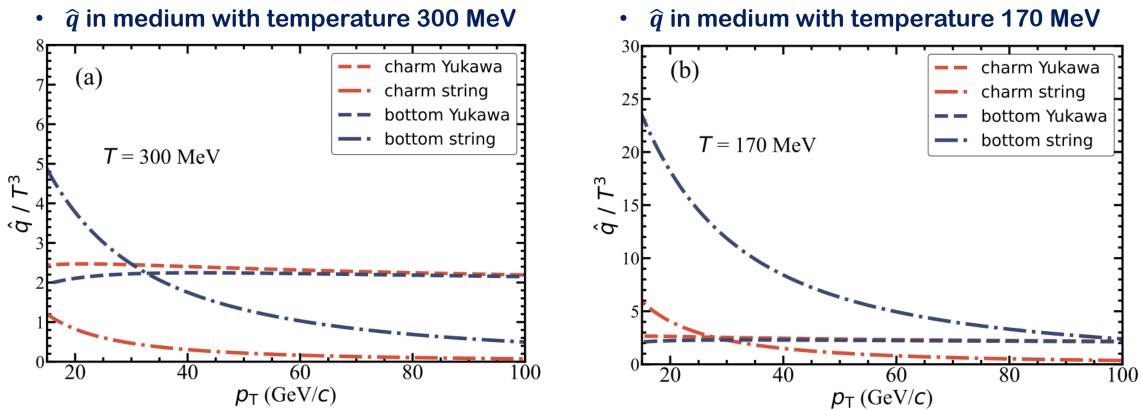
R_{AA} of hadrons and leptons at high p_T


- > The crossover appears in both meson's and lepton's R_{AA} at high p_{T} .
- > We can find similar observation at the LHC energy.

11

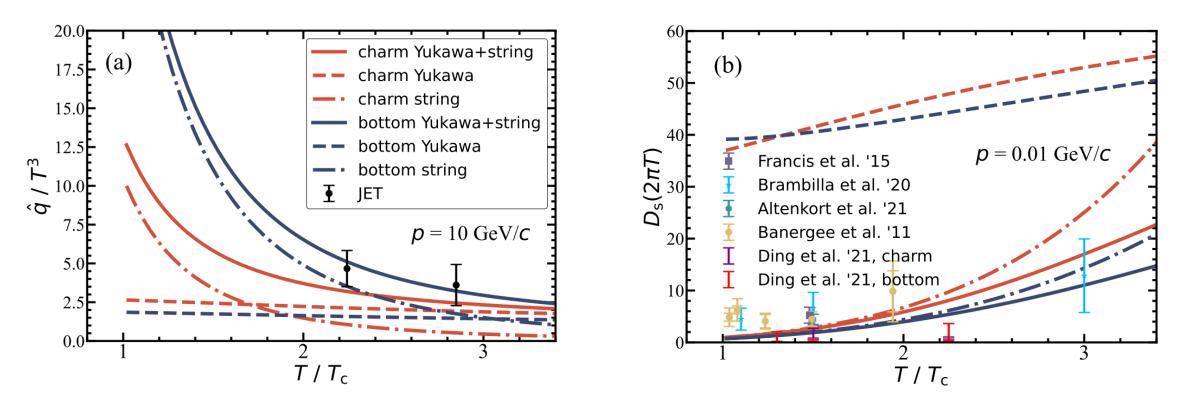
The energy loss of heavy quarks in different temperature

• Energy loss in static medium with temperature of 300 MeV


• Energy loss in static medium with temperature of 170 MeV

- > The crossover disappears at higher temperature.
- > Remember the string term , $\frac{(8\pi\sigma)^2}{N_c^2-1}\frac{t^2-4m_Q^2t}{(t-m_s^2)^4}$, is larger when temperature is lower.

Contribution from Yukawa term and string term


- > String term causes the more energy loss of bottom.
- > At higher temperature, the Yukawa term dominates at high p_T , while at lower temperature, the string term of bottom dominates at high p_T .

\widehat{q} and diffusion coefficient D_s

• \hat{q} vs. T

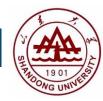
• D_s vs. T

- > The string term decreases with the increase of temperature, while Yukawa term is almost the same.
- > We calculated the diffusion coefficient D_s , which agree with the results from lattice QCD.

Factors affecting energy loss

• In elastic scattering ($\Delta E_c < \Delta E_b$): the string term lead to the more energy loss of bottom.

	Low temperature	High temperature
Low momentum	string term	string term
High momentum	string term	Yukawa term


• In inelastic scattering ($\Delta E_c > \Delta E_b$):

Dead cone effect: the energy loss decreases with the increase of m/E, which lead to the less bottom quarks' energy loss than that of charm quarks at low p_T .

The unexpected mass hierarchy of energy loss comes from the competition between the effect of string interaction on elastic scatterings and the dead cone effect on inelastic scatterings.

	Low temperature	High temperature
Low momentum	Dead cone effect	Dead cone effect
High momentum	String interaction effect	Dead cone effect & Yukawa interaction effect

- > We studied the R_{AA} of heavy mesons and heavy flavor leptons from low to high p_T .
- > We found the counterintuitive mass hierarchy of heavy quark energy loss, which can be explained by the competition between string term contribution and the dead cone effect, and we forecasted the R_{AA} of heavy quarks behavior at high p_T .
- Conclusion is model dependent, and difference between charm and bottom RAA is small.

Back up