Zhiqiang Miao (缪志强) zq_miao@sjtu.edu.cn Tsung-Dao Lee Institute, SJTU

In collaboration with:

Enping Zhou(周恩平) @HUST and Ang Li(李昂)@XMU

Resolving Phase Transition Properties of Dense Matter through Tidal-excited g-mode from inspiralling neutron stars

Based on MZQ+2024 ApJ 964, 31 (2305.08501)

李政道研究所 **TSUNG-DAO LEE INSTITUTE**

2024.5.16 @ Hefei

๏G-mode induced by 1st PT interface

- ๏Background ๏Tidal seismology and GW
- ๏Summary

Outline

❖**Background**

Schematic QCD phase diagram. Deconfinement at high **FIG. 1.** temperature and low density has been established to be a smooth crossover. A change to QM at low temperature is yet unresolved.

Fujimoto+ PRL 2022

• If there is a 1st PT, then can we detect it by using neutron star observations?

❖**Background**

Graber&Andersson 2017

- The densest observable object in the universe. For M = 1.4 M_{\odot} , R \approx 10km, average density ~few times nuclear density ($\sim 10^{14}\,{\rm g/cm^3})$
- The ideal laboratory for exploring physics under extreme conditions.
	- ‣ Gravity
	- ‣ Electromagnetism
	- ‣ Strong interaction
	- ‣ Weak interaction

๏Background ๏G-mode induced by 1st PT interface o Tidal seismology and GW o Summary

Outline

❖**Neutron star seismology and normal modes**

- Basic equations (Newtonian, normal modes)
	- Non-rotating star in equilibrium (the background star)

$$
\frac{dp}{dr} = -\frac{\rho M}{r^2}
$$

• perturbation equations

$$
\xi(r, t) = (\xi^r \hat{\mathbf{r}} + \xi^h r \nabla) Y_{lm}(\theta, \phi) e^{i\omega t}
$$

$$
\partial_t^2 \xi = \frac{\delta \rho}{\rho^2} \nabla p - \frac{1}{\rho} \nabla \delta p - \nabla \delta \Phi.
$$
 (Euler equation)

$$
\delta \rho = - \nabla \cdot (\rho \xi)
$$
 (Continuity)

$$
\mathcal{L} \xi - \rho \omega^2 \xi = 0
$$

$$
\mathcal{L}\boldsymbol{\xi} = \rho[\nabla(\frac{\Gamma p}{\rho}\nabla \cdot \boldsymbol{\xi}) - \nabla(\frac{1}{\rho}\boldsymbol{\xi} \cdot \nabla p) + \nabla \delta \Phi]
$$

李改道研究所

 $\int_{\omega}^{i\omega t} Y_{lm} dt dr$

❖**Neutron star seismology and normal modes**

- Basic equations (Newtonian, normal modes)
	- Non-rotating star in equilibrium (the background star)

$$
\frac{dp}{dr} = -\frac{\rho M}{r^2}
$$

• perturbation equations

$$
\mathcal{L}\boldsymbol{\xi} = \rho[\nabla(\frac{\Gamma p}{\rho}\nabla \cdot \boldsymbol{\xi}) - \nabla(\frac{1}{\rho}\boldsymbol{\xi} \cdot \nabla p) + \nabla \delta \Phi]
$$

$$
\xi(r, t) = (\xi^r \hat{\mathbf{r}} + \xi^h r \nabla) Y_{lm}(\theta, \phi) e^{i\omega t}
$$

$$
\partial_t^2 \xi = \frac{\delta \rho}{\rho^2} \nabla p - \frac{1}{\rho} \nabla \delta p - \nabla \delta \Phi.
$$
 (Euler equation)

$$
\delta \rho = - \nabla \cdot (\rho \xi)
$$
 (Continuity)

$$
\mathcal{L} \xi - \rho \omega^2 \xi = 0
$$

In GR, the frequency is a complex, the imaginary part represent the damping due to gravitational wave radiation.

$$
ds^{2} = g_{\mu\nu}dx^{\mu}dx^{\nu} = -e^{2\nu}dt^{2} + e^{2\lambda}dr^{2} + r^{2}d\Omega
$$

$$
\frac{dp}{dr} = -\frac{(\rho + p)(M + 4\pi r^{3}p)}{r(r - 2M)}
$$
 (TOV equation)

$$
\xi^r = r^{l-1}e^{-\lambda}WY_{lm}e^{i\omega t}, \qquad h_{\mu\nu} = -r^lH_0e^{i\omega t}Y_{lm}dt^2 - r^lH_0e^{i\omega t}Y_{lm}dr^2
$$

\n
$$
\xi^{\theta} = -r^{l-2}V\partial_{\theta}Y_{lm}e^{i\omega t}, \qquad -r^lKe^{i\omega t}Y_{lm}r^2(d\theta^2 + \sin^2\theta d\phi^2) - 2i\omega r^{l+1}H_1e^{i\phi}
$$

\n
$$
\xi^{\phi} = -r^{l-2}\sin^{-2}\theta V\partial_{\phi}Y_{lm}e^{i\omega t}
$$

• Some difference in GR (quasi-normal modes)

$$
(p + \varepsilon)u^{\nu}\nabla_{\nu}u^{\mu} + \perp^{\mu\nu}\nabla_{\nu}p = 0
$$

$$
\nabla_{\mu}(nu^{\mu}) = 0 \qquad \text{(Continuity)}
$$

$$
[\mathcal{L} - (p + \varepsilon)e^{-2\Phi}\omega_{\alpha}^{2}]\xi_{\alpha}^{\mu} = 0
$$

*The (discontinuity) g-mode

$$
x = R_{\text{trans}}/R
$$

李达道研究所 **TSUNG-DAO LEE INSTITUTE**

❖**How can we detect the modes?**

- Different from geoseismology on Earth and helioseismology on Sun, we can't directly detect the seismic wave of NS oscillation and can hardly to resolve the surface emission of NSs.
- GW signals are very faint, only possible for galactic events (like supernova or pulsar glitch) and f-mode.

$$
h \approx 4 \times 10^{-23} \left(\frac{E}{10^{-9} M_{\odot} c^2}\right)^{1/2} \left(\frac{\tau}{0.1 \text{ s}}\right)^{-1/2} \left(\frac{f}{2 \text{ kHz}}\right)^{-1} \left(\frac{d}{10 \text{ kpc}}\right)^{-1}
$$

• We may detect the orbital phase change induced by mode excitation in BNS inspiral.

๏Background

๏G-mode induced by 1st PT interface

๏Tidal seismology and GW

o Summary

Outline

❖**Stellar response to tidal field**

• Oscillation under tidal force

$$
\left(\rho \frac{\partial^2}{\partial t^2} + \mathcal{L}\right) \vec{\xi} = -\rho \nabla U, \qquad U = -GM' \sum_{lm} \frac{4\pi}{2l+1} \frac{r^l}{D^{l+1}} Y^*_{lm} \left(\frac{\pi}{2}, \Phi\right) Y_{lm}(\theta, \phi)
$$

$$
= -GM' \sum_{lm} W_{lm} \frac{r^l}{D(t)^{l+1}} e^{-im\Phi(t)} Y_{lm}(\theta, \phi)
$$

• Decompose into normal modes

$$
\vec{\xi}(\mathbf{r},t) = \sum_{\alpha} a_{\alpha}(t) \vec{\xi}_{\alpha}(\mathbf{r}), \quad (\mathcal{L} - \rho \omega_{\alpha}^2) \vec{\xi}_{\alpha}(\mathbf{r}) = 0
$$

$$
\ddot{a}_{\alpha} + \omega_{\alpha}^2 a_{\alpha} = \frac{GM_2 W_{lm} Q_{\alpha}}{D^{l+1}} e^{-im\Omega_{\text{orb}}t} \qquad Q_{nl} = \int d^3x \rho \xi_{nlm}^* \cdot \nabla [r^l Y_{lm}(\theta, \phi)]
$$

• Quasi-equilibrium (static) tide

$$
a_{\alpha} \sim \frac{e^{i\Omega_{\rm orb}t}}{\omega_{\alpha}^2 D^{l+1}}
$$

$$
\omega_{\alpha} \gg m\Omega_{\text{orb}}
$$

• Resonant tide

$$
\omega_{\alpha} \simeq m\Omega_{\rm orb}
$$

$$
a_{\alpha} \sim \frac{e^{i\Omega_{\rm orb}t}}{(\omega_{\alpha}^2 - m^2 \Omega_{\rm orb}^2)D^{l+1}}
$$

• Tidal overlap integral

$$
= \int_0^R \rho l r^{l+1} \, dr [\xi_{nl}^r(r) + (l+1) \xi_{nl}^{\perp}(r)]
$$

• 12

❖**Stellar response to tidal field**

• Oscillation under tidal force

$$
\left(\rho \frac{\partial^2}{\partial t^2} + \mathcal{L}\right) \vec{\xi} = -\rho \nabla U, \qquad U = -GM' \sum_{lm} \frac{4\pi}{2l+1} \frac{\partial}{\partial t} = -GM' \sum_{lm} W_{lm} \frac{r'}{D(t)'}
$$

• Decompose into normal modes

$$
\vec{\xi}(\mathbf{r},t) = \sum_{\alpha} a_{\alpha}(t) \vec{\xi}_{\alpha}(\mathbf{r}), \quad (\mathcal{L} - \rho \omega_{\alpha}^2) \vec{\xi}_{\alpha}(\mathbf{r}) = 0
$$

$$
\ddot{a}_{\alpha} + \omega_{\alpha}^2 a_{\alpha} = \frac{GM_2 W_{lm} Q_{\alpha}}{D^{l+1}} e^{-im\Omega_{\text{orb}}t} \qquad Q
$$

• Quasi-equilibrium (static) tide

$$
\omega_{\alpha} \gg m\Omega_{\text{orb}}
$$

• Resonant tide

$$
\omega_{\alpha} \simeq m\Omega_{\rm orb}
$$

Passamonti+21

aα ∼

$$
a_{\alpha} \sim \frac{e^{i\Omega_{\rm orb}t}}{(\omega_{\alpha}^2 - m^2 \Omega_{\rm orb}^2)D^{l+1}}
$$

 $e^{i\Omega_{\text{orb}}t}$

 $\omega^2_{\alpha}D^{l+1}$

❖**Resonant tides**

• The resonance is almost instaneous at lower frequency

$$
t_{res} \simeq 0.01 s \mathcal{M}_{1.2}^{-5/6} f_{600}^{-11/6} \ll t_D \, .
$$

Resonance

• The energy transfer from orbit to stellar oscillation is

$$
\Delta E \simeq 5 \times 10^{49} \text{erg} f_{600}^{1/3} Q_{0.01}^2 M_{1.4}^{-2/3}
$$

• Which implies a sudden GW phase change at resonance frequency

$$
\delta \Phi = \frac{\omega_{mode} \Delta E}{P_{GW}} \simeq -0.12 f_{600}^{-2} Q_{0.01}^2 M_{1.4}^{-4} R_{12}^2 \frac{2q}{1+q}
$$

李改道研究所

 $\simeq 0.1 s\mathcal{M}_{1.2}^{-5/3} f_{600}^{-8/3}$ **Orbit decay**

 $R_{12}^{2/3}R_{12}^{2}q(\frac{2}{1+q})^{5/3}$

Lai+1994

❖**Signature in gravitational waveform**

 $h(f) = \mathcal{A}e^{i\Psi(f)}$ $2\pi f t_c - \phi_c - \frac{\pi}{4}$ 3 8*πG*ℳ*f* $\frac{1}{c^3}$)^{-5/3} + $\Big($ 4 4 $\Psi(f, \phi_c, t_c) =$ $2\pi f t_c - \phi_c - \frac{\pi}{4}$ 3 8*πG*ℳ*f* $\frac{1}{c^3}$)^{-5/3} + $\Big($ 4 4

$$
\frac{1}{3}
$$

$$
\frac{1
$$

$$
)^{-5/3}
$$

• Before resonance, i.e., $f < f_a$

 $-(1 - \frac{f}{c})$ f_a)*δϕ^a*

• After the resonance, i.e., $f>f_a$

(Flanagan+2007, Yu+2017)

❖**Sensitivity curve with future ground-base detectors**

Fisher Information Matrix

$$
\Gamma_{ij} = \left(\frac{\partial h}{\partial \theta_i} \Big| \frac{\partial h}{\partial \theta_i}\right), \qquad (h_1|h_2) = 2 \int_0^\infty \frac{\tilde{h}_1^*(f)\tilde{h}_2(f)}{S_i}
$$

*Detectability of the g-mode

李改道研究所

❖**Data analysis of GW170817**

MZQ+2024

 $\{\theta_i\} = \{\mathcal{M}, q, \Lambda_1, \Lambda_2, \chi_{1z}, \chi_{2z}, \theta_{jn}, t_c, \phi_c, \Psi, |\delta \bar{\phi}|, \bar{f}\}.$ (A.

We fix the location of the source to the position determined electromagnetic observations (Abbott et al. 2017c; Levan et 2017) with $\alpha(J2000) = 197^\circ.45$, $\delta(J2000) = -23^\circ.38$ a $z = 0.0099$. The priors of the parameters are chosen following those used in Abbott et al. (2019) , with the excepti of the priors for $|\delta \phi|$ and \bar{f} . For the mode resonance paramete

• H0: model without mode resonance

• H1: model with mode resonance

No detection of the signal, as $\text{BF}_{H_2}^{H_1}$ H_0 $\in [0.72, 1.11]$

• Waveform model: IMRPhenomD_NTidal + resonance

***Data analysis of GW170817**

NL3wp+CSS

 $MZQ+2024$

*Constraints on phase transition properties

Summary

√A case study of the g-mode resonance in GW170817 data has ruled out the possibility of a weak phase transition taking place at low density.

Thank you for your attention!

 $\sqrt{1}$ st phase transition \rightarrow discontinuity g-mode \rightarrow resonance signature in GW waveform