

Beam test results of thin gap RPC

Tiesheng Dai¹, Liang Guan², Liang Han², **Hongye Song²**, Xiaolian Wang² Bing Zhou¹, Junjie Zhu¹, Yan Zhen³

University of Michigan
Univ. of Sci. and Tech. of China
University of Boston

中国科学技术大学物理学院

School of Physical Sciences, University of Science and Technology of China

- Introduction
- Setup
- Data analysis
- Conclusion

ATLAS muon spectrometer

Toroid Magnets Solenoid Magnet SCT Tracker Pixel Detector TRT Tracker

本日神圣技ポ大学物理学院 Introduction versity of Science and Technology of China

Count rates in ATLAS for L=10³⁴ cm⁻²s⁻¹

- The prospect of reaching luminosity of greater than 10³⁴ cm⁻²s⁻¹ for the LHC after 2018 shutdown requires the muon system to be upgraded for L1 trigger
- Provide extra trigger within 5ns time resolution in inner station \rightarrow eliminate fake trigger for high p_T (>20GeV)
- Improve p_T resolution \rightarrow needs <1mrad point resolution

▲ ● 神 る、我 ボ 大 学 物理学院 Introduction versity of Science and Technology of China

• Withstand the harsh environment near the beam pile

One of the proposal: tgRPC+sMDT

• Thin-gap RPC design:

- Gas gap: 2 mm → 1mm
- Graphite layer: 100 K Ω /sq \rightarrow few M Ω /sq
- r/o strip: 3cm \rightarrow 1-few mm
- Bakelite plates: $10^{12} \Omega \cdot \text{cm}, 2\text{mm} \rightarrow 10^{10}$ $\Omega \cdot \text{cm}, 1\text{mm}$

• Scope of the thin gap RPC beam test:

本国科学技术大学物理学院 Introduction versity of Science and Technology of China

- Test the timing performance
- Demonstrate sub-mm spatial resolution by using fine strips
 - Note: sub-mm position fluctuation possible for RPC. Previous Study by TsingHua University. J.Ye et al. NIM A 591 (2008)
- Study the efficiency and cluster size is for both HV polarization, with respect to the readout strip

Thin Gap RPC and MDT at H8 Test Beam

Workshop on Micro Pattern Gas Detector Jan 6th 2012 @Beijing

- Event and Hit Selection:
 - Small scintillator (2 layers 2cm² area) must be fired
 - ADC > 50 counts

Thin-Gap RPC Signal at -6600V

Negative HV are applied to Thin-gap RPC chamber

TDC&ADC Distribution

Hit Distribution in one Mezzanine card

本自然系技术大学物理学院 MultiplicityUniversity of Science and Technology of Chinas

Efficiency == Fraction event with at least n RPC hits over number small scintillators are fired

Time resolution corrected by scintillator

T&A Distribution

• HV -6500V

@Beijing

- Effective threshold -48.75mV
- Charge integration gate 11ns

Time resolution corrected by TA Distribution

Jan 6th 2012

Residual Measurement

- Event selection: t<115&&adc>50&Hit(sMDT)
- Anaylsis is done w/o any adc and tdc calibration
- Calculation of Residual between UM RPC and MDT (y axis)

ResidualY= PredictedY(MDT)-ReconstructedY(RPC)

- PredictedY=360*m+b
- Three kind of calculations of hit point on UM RPC chamber are performed:
 - ✓ Maximum Charge Strip finding ReconstructedY=(72-Strip_{MaxQStrip})*1.27
 - ✓ Earliest Arrival Time finding *ReconstrucedY=(72-Strip_{early time})*1.27*
 - \checkmark Centriod finding *ReconstrucedY=\sum (72-Strip_i)^* adc_i^* 1.27 / \sum adc_i*

Beam Profile & Divergence

Residual Distribution I (Maximum charge) Strip with maximum charge is used to calculate the hit position on UM RPC

Residual Distribution (MDT PredictedY - UMRPC ReconY) Maximum Charge

-38 -37 -

-36 -35 -34

-33

Strip with second largest charge (CS>=2)

Residual Distribution II (Earliest arrival time)

Jan 6th 2012

@Beijing

Workshop on Micro Pattern Gas Detector

Residual Distribution III (Centriod)

Global Residual Distribution

Local Residual (strip 44)Distribution

- Reconstructed position are calculated from the centriod of all hits
- Single strip overall space resolution: $\sigma = 350 \ \mu m$
- Global space resolution: σ=390μm

19

Workshop on Micro Pattern Gas Detector

• UM RPC 1.2mm gas gap readout by 1.2 mm pitch strips

• Large signal and almost background free;

中国神圣投本大学物理学院 Conclusionversity of Science and Technology of China

- Highly correlated charge measurements from two ends as expected;
- Low event multiplicity (2 or 3 hits per event)
- Very high plan efficiency (should close to single strip efficiency), around 98% with HV -6500V;
- Good time resolution with/without slew correction;
- Without explicit adc and tdc calibration, global space resolution $\sim 650 \ \mu m$ is achieved both from maximum charge finding method and earliest arrival time find method
- Most of the strips have the earliest signal arrival time are corresponding to the ones with maximum charge (preliminarily)
- Charge centriod method give the UM RPC spatial resolution better than at least 300 μm

Thank you