

第一届安徽省核物理研讨会

Kr and Sr isotopes with the deformed relativistic Hartree-Bogoliubov theory in

School of Physics and Optoelectronic Engineering, Anhui University, China

Xiaoyan Zhang Supervisor: Zhongming Niu January 22, 2024

Contents

Introduction

• Numerical details

Results and discussion

• Summary

Contents

Introduction

• Numerical details

Introduction

- Nuclear mass plays important roles not only in various aspects of nuclear physics, but also in other branches of physics, such as astrophysics and nuclear engineering. [Lunney2003RMP, Burbidge1957RMP]
- Nuclear physics: it contains wealth of nuclear structure information such as magic number and shape transition, and it is widely used to extract nuclear effective interactions.

position

 Other branches: it is essential to determine nuclear reaction and decay energies, so it is important in astrophysics and nuclear engineering.

Nuclear mass models

物理与光电工程学院 School of Physics & Optoelectronic Engineering

- Macroscopic models: BW, BW2 [Weizsäcker1935ZP, Bethe1937RMP, Kirson2008NPA]
- Macro-microscopic models: KTUY, FRDM, WS4 [Koura2050PTP, Moller2012PRL, Wang2014PLB]
- Density functional theory: UNEDF1, BSkG2, HFB-31 [Kortelainen2014PRC, Scamps2021EPJA, Goriely2016PRC]
- Covariant density functional theory: TMA, PC-PK1, DD-MEB2[Geng2005PTP, Zhang2022ADNDT, Arteaga2016EPJA]

Deformed relativistic Hartree-Bogoliubov theory in continuum (DRHBc) +2DCH:

- Microscopic relativistic model including superfluidity, deformation, and continuum effects, which self-consistently describes g.s. and excited states for both stable and exotic nuclei [Zhou2010PRC, Zhang2020PRC,].
- Employ the two-dimensional collective Hamiltonian (2DCH) method to consider the beyond-mean-field dynamical correlation energies(DCEs) are essential for describing nuclei with different deformations, including (near) spherical nuclei.[Sun2022CPC]

Contents

Introduction

• Numerical details

Deformed relativistic Hartree-Bogoliubov theory in continuum with a point-coupling functional: Examples of even-even Nd isotopes

Kaiyuan Zhang (张开元),¹ Myung-Ki Cheoun,² Yong-Beom Choi,³ Pooi Seong Chong,⁴ Jianmin Dong (董建敏),^{5,6} Lisheng Geng (耿立升),⁷ Eunja Ha,² Xiaotao He (贺晓涛),⁸ Chan Heo,⁴ Meng Chit Ho,⁴ Eun Jin In,⁹ Seonghyun Kim,² Youngman Kim,¹⁰ Chang-Hwan Lee,³ Jenny Lee,⁴ Zhipan Li (李志攀),¹¹ Tianpeng Luo (骆天鹏),¹ Jie Meng (孟杰),⁰,^{1,*} Myeong-Hwan Mun,¹² Zhongming Niu (牛中明),^{13,14} Cong Pan (潘琮),¹ Panagiota Papakonstantinou,¹⁵ Xinle Shang (尚新乐),^{5,6} Caiwan Shen (沈彩万),¹⁶ Guofang Shen (申国防),⁷ Wei Sun (孙玮),¹¹ Xiang-Xiang Sun (孙向向),^{17,18} Chi Kin Tam,⁴ Thaivayongnou,⁷ Chen Wang (王晨),⁸ Sau Hei Wong,⁴ Xuewei Xia (夏学伟),¹⁹ Yijun Yan (晏一珺),^{5,6} Ryan Wai-Yen Yeung,⁴ To Chung Yiu,⁴ Shuangquan Zhang (张双全),¹ Wei Zhang (张炜),²⁰ and Shan-Gui Zhou (周善贵)^{17,18,21,22} (DRHBc Mass Table Collaboration)

- Nuclei: Even-even Kr to Zr (Z= 36-40) isotopes
- Version: Code_DRHBc_202112
- Density functional: PC-PK1
- Mesh size: $\Delta r=0.1$ fm; Box size: $R_{\text{box}}=20$ fm

- Angular momentum cutoff: $J_{\text{max}} = 23/2$
- Energy cutoff: $E_{cut} = 300 \text{ MeV}$
- Pairing strength: V_0 =-325.0 MeV fm³
- Legendre expansion: $\lambda_{max} = 6 (8 \le Z \le 80)$

Contents

Introduction

• Numerical details

Fig. The differences between the experimental binding energies and the DRHBc results, the DRHBc results with E_{rot} , and the DRHBc+2DCH results.

- $\sigma_{\rm rms}$ are 3.1, 1.8 and 1.2 MeV DRHBc, DRHBc w/ $E_{\rm rot}$ and DRHBc+2DCH.
- The DCEs are essential for describing nuclei with different deformations, including (near) spherical nuclei.

- The soft potentials around the global minima are found for nuclei with neutron number around magic number N = 50.
- possible candidates for shape coexistence: ⁷⁴Kr,
 ⁹⁰Kr and ⁹²Kr; ⁷⁶Sr, ⁷⁸Sr and ⁹⁴Sr
- Fig. Evolution of the PECs for Kr (a) and Sr (b) isotopes from the constrained DRHBc calculations.

Deformation and charge radius

- The calculated deformations with the DRHBc+2DCH better agree with the experimental deformation data.
- The charge radius is closely related to the deformation.

Fig. The Charge radii and deformations with the DRHBc and the DRHBc+2DCH results.

Fig. Charge radius as a function of deformation for ¹⁰⁰Sr.

The empirical formula shows that the charge radius is independent of the sign of the deformation:

$$R_{\rm ch} = R_{\rm ch0} \left(1 + \frac{5}{4\pi} \beta_2^2 \right)$$

- The DRHBc also predict a prolate minimum at this region, which agree well with the experimental charge radius and deformation.
- The charge radius increases more rapidly along the oblate.

- At least one charge radius from the constrained DRHBc calculation can reproduce the experimental value.
- The correlation between charge radius and deformation can help to determine the oblate or prolate shape of a nucleus.

Fig. Charge radii from the constrained DRHBc calculations for Kr and Sr isotopes.

Contents

Introduction

• Numerical details

Summary:

- The calculated deformations with the DRHBc+2DCH better agree with the experimental deformation data.
- The constrained DRHBc calculations are helpful to distinguish the oblate or prolate shape for the nuclei with deformation $\beta_2 \ge 0.3$ by combining with the experimental charge radii and absolute values of deformations.

Perspectives:

• Large-scale calculations for even-even nuclei using DRHBc+2DCH are underway.

Collaborators:

Anhui University: Zhongming Niu (牛中明)

Sichuan Normal University: Xuewei Xia (夏学伟)

Southwest University: Zhipan Li (李志攀)、Wei Sun (孙玮)

Thank you!

The 2DCH collective Hamiltonian is

$$\hat{H}_{coll} = \hat{T}_{vib} + \hat{T}_{rot} + V_{coll}$$
$$= -\frac{\hbar^2}{2} \frac{1}{\sqrt{\mathcal{I}B_{\beta\beta}}} \frac{\partial}{\partial\beta} \sqrt{\frac{\mathcal{I}}{B_{\beta\beta}}} \frac{\partial}{\partial\beta} + \frac{\hat{J}^2}{2\mathcal{I}} + V_{col}$$

The 5DCH

Nuclear excitations determined by quadrupole vibrational and rotational degrees of freedom can be treated simultaneously by considering five quadrupole collective coordinates to describe the surface of a deformed nucleus.

