第一届安徽省核物理研讨会

Hypernuclei production in heavy-ion collisions at high baryon density

Yifei Zhang (张一飞)

University of Science and Technology of China

Jan 22-23, 2024

Outline

Introduction

Recent hypernuclei measurements in STAR BES-II

Hypernuclei production mechanism

production yields, particle ratios, collectivity ...

Hypernuclei internal structure

branching ratios, lifetimes, binding energies ...

Outline

Introduction

Recent hypernuclei measurements in STAR BES-II

Hypernuclei production mechanism

production yields, particle ratios, collectivity ...

Hypernuclei internal structure

branching ratios, lifetimes, binding energies ...

Introduction: what and why

H. Nemura et al, Prog. Theor. Phys. 103, 929 (2000)

Yifei Zhang/USTC

Introduction: what and why

Why is hypernuclei?

- Probe hyperon-nucleon (Y-N) interactions. Simple/light hypernuclei are cornerstones.
- Strangeness in high-density nuclear matter. EoS of neutron stars.

Yifei Zhang/USTC

第一届安徽省核物理研讨会,2024年1月22日

Introduction: how

Experimentally, measurement of hypernuclei allow us to understand,

Internal structure of hypernuclei

Week decay, lifetime is close to free Λ hyperon.

Loosely bounded, binding energy, branching ratios ...

Understanding hypernuclei structure may give more constraints on the Y-N interaction

Production in high energy heavy-ion collisions production yields/mechanisms, collectivity ...

The formation of loosely bound states (how they survive) in violent heavy-ion collisions is not well understood

Introduction: RHIC BES-II program

Introduction: RHIC BES-II program

Coalescence and statistical-thermal models predict: At lower beam energies, the hypernuclei production is expected to be enhanced due to high baryon density.

Large statistics from STAR BES-II provide a great opportunity to study hypernuclei production.

Outline

Introduction

Recent hypernuclei measurements in STAR BES-II

Hypernuclei production mechanism

production yields, particle ratios, collectivity ...

Hypernuclei internal structure

branching ratios, lifetimes, binding energies ...

Hypernuclei reconstructions

Hypernuclei production yields at 3 GeV

- First measurement of dN/dy of light hypernuclei in heavy-ion collisions.
- Different trends in the ${}^{4}_{\Lambda}H$ rapidity distributions in central (0-10%) and semi-central (10-50%) collisions.
- Transport model (JAM) with coalescence reproduces trends of $^{4}_{\Lambda}$ H but failed to describe $^{3}_{\Lambda}$ H.

Hypertriton production yields at BES-II energies

Comprehensive measurements using fixed-target and collider data with high statistics.

第一届安徽省核物理研讨会,2024年1月22日

Hypertriton excitation function

- Yield increases strongly from 27 7.7 GeV
- Maximum is reached at ~3-4 GeV
- Qualitatively consistent with thermal and coalescence models

Trend in data can be interpreted as an interplay b/w

increasing baryon density and stronger strangeness canonical suppression

towards low energies

Yifei Zhang/USTC

Nuclei-to-Hadron Ratios

Strangeness Population Factor (S_A)

♦ S_A: Ratio of hypernuclei yield compared to light nuclei.

- ♦ S_A vs p_T/A, expect ~ 1 if no suppression naively, S₃ < 1 → suppression of ${}^{3}_{\Lambda}$ H to 3 He due to larger size. S₄ > S₃ → enhanced ${}^{4}_{\Lambda}$ H, feeddown from excited states.
- ♦ No clear centrality dependence.
- \diamond None of the models describe the S₃ data quantitatively.

Increasing trend of S₃ originally proposed as a signature of onset of deconfinement PLB 684 (2010) 224

Yifei Zhang/USTC

第一届安徽省核物理研讨会,2024年1月22日

Hypernuclei directed flow at 3 GeV

Solution First measurements of ${}^{3}_{\Lambda}H$ and ${}^{4}_{\Lambda}H$ directed flow (v₁) from 5 - 40% centrality

 v_1 slopes of ${}^3_{\Lambda}H$ and ${}^4_{\Lambda}H$ seem to follow a mass number scaling.

→ Imply coalescence is a dominant process for hypernuclei formation in heavy-ion collisions

Yifei Zhang/USTC

第一届安徽省核物理研讨会,2024年1月22日

Outline

Introduction

Recent hypernuclei measurements in STAR BES-II

Hypernuclei production mechanism

production yields, particle ratios, collectivity ...

Hypernuclei internal structure

branching ratios, lifetimes, binding energies ...

Hypertriton relative branching ratio (R₃)

Improved precision on R₃

Stronger constraints on hypernuclear interaction models used to describe $^{3}_{\Lambda}\mathrm{H}$

Stronger constraints on absolute B.R.s

Lifetimes for light hypernuclei

 ${}^{3}_{\Lambda}$ H: $\tau = 221 \pm 15$ (stat.) ± 19 (syst.)[ps]

 ${}^{4}_{\Lambda}$ H: $\tau = 218 \pm 6$ (stat.) ± 13 (syst.)[ps]

 $^{4}_{\Lambda}$ He: $\tau = 229 \pm 23$ (stat.) ± 20 (syst.)[ps]

- Shorter than that of free Λ (with 1.8 σ , 3.0 σ , 1.1 σ)
- Consistent with former measurements (within 2.5 σ for ${}^{3}_{\Lambda}H$, ${}^{4}_{\Lambda}H$)
- Results consistent with model calculations including pion FSI and calculations under Λd 2body picture within 1*σ*
- $^{3}_{\Lambda}$ H, $^{4}_{\Lambda}$ H results with improved precision provide tighter constraints on models

Yifei Zhang/USTC

第一届安徽省核物理研讨会,2024年1月22日

$\mathbf{B}_{\Lambda} \text{ of } ^{3}_{\Lambda} \mathrm{H}$

- \diamond STAR data differs from zero (3.4 σ) and larger than the prior measurements from 1973
- Theoretical calculations span in a wide range

$\textbf{B}_{\Lambda} \text{ and } \Delta \textbf{B}_{\Lambda} \text{ of } ~^4_{\Lambda} \text{H} \text{ and } ~^4_{\Lambda} \text{He}$

- ♦ Λ binding energies(B_{Λ}) of $^{4}_{\Lambda}$ H and $^{4}_{\Lambda}$ He and their differences Δ B_{Λ} ♦ For ground states, Δ B $^{4}_{\Lambda}(0^{+}) = B_{\Lambda}(^{4}_{\Lambda}$ He,0⁺) - $B_{\Lambda}(^{4}_{\Lambda}$ H,0⁺)
 - \diamondsuit For excited states, the results are obtained from the $\gamma\text{-ray}$ transition energies E_{γ}

$$\begin{split} &B_{\Lambda}^4({}^4_{\Lambda}\text{He}/\text{H},1^+) = B_{\Lambda}({}^4_{\Lambda}\text{He}/\text{H},0^+) - E_{\gamma}({}^4_{\Lambda}\text{He}/\text{H}) \\ &\Delta B_{\Lambda}^4(1^+) = B_{\Lambda}({}^4_{\Lambda}\text{He},1^+) - B_{\Lambda}({}^4_{\Lambda}\text{H},1^+) \end{split}$$

- \land hinding-energy difference
 - \rightarrow Study charge symmetry breaking (CSB) effect in A = 4 hypernuclei
- Differences are comparable large values and have opposite sign in 0⁺ and 1⁺ states
 - Consistent with the calculation including a CSB effect within uncertainties.

Summary

STAR BES-II provides a unique opportunity to study hypernuclei, especially at high-baryon-density region.

 \clubsuit First measurement of ${}^3_\Lambda H$ and ${}^4_\Lambda H$ collectivity v_1

- Mass number scaling is observed for the light hypernuclei \rightarrow qualitatively consistent with coalescence

Similar First measurement of ${}^{3}_{\Lambda}H$ and ${}^{4}_{\Lambda}H$ dN/dy vs y in heavy-ion collisions. Excitation functions and S_A.

- Provide first constraints to hypernuclei production models @ high $\mu_{
m B}$

$^{3}_{\Lambda}H, ^{4}_{\Lambda}H$ lifetimes measured with improved precision

 \clubsuit Relative branching ratio R_3 of ${}^3_{\Lambda}H$ with improved precision

- Precision lifetime and R_3 provide stronger constraints on hyper nuclear interaction models
- Λ binding-energy difference between ${}^4_{\Lambda}H$ and ${}^4_{\Lambda}He$
 - Hint of CSB effect at A=4

Outlook: High baryon density frontier

Thanks for your attention !

Feed-down effect

Feed-down effect

• Thermal-FIST also suggest increasing trend

