

Singularity of density of states in the pi-flux lattice

Wei Li

Center for Fundamental Physics School of Mechanics and Photoelectric Physics Anhui University of Science and Technology

January 25, 2024

Outline

Motivation

- Interactions vs disorder
- π -flux model
- Lattice deformations and ripples

2 Random hopping in π -flux model

- Singularity of DOS
- k-dependent self-energy and minimal conductivity

Random hopping in $\pi\text{-flux}$ model 000000000

Summary 00

Interactions vs disorder

disorder in semimetals

Why disorder?

- Inherently present in all solid-states systems
- e determine/dominate properties localization, symmetry broken, new phase...

adjustable

doping, impurities, vacancies, absorption, strain...

Interactions vs disorder

Interactions-disorder duality and critical phenomena

non-Anderson transition

$$H = \int \Psi^{\dagger}(r)\xi_{p}\Psi(r)d^{d}r - \frac{1}{2}\int \Psi^{\dagger}(r)\Psi^{\dagger}(r')\xi_{p}\Psi(r')\Psi(r)d^{d}rd^{d}r'$$

Syzranov, Sergey V., etc al, Annu. Rev. Condens. Matter Phys. 9, 1 (2018); Sun, Shijun, and Sergey Syzranov. Phys. Rev. B 108 195132

(2023)

Random hopping in π -flux model

Summary 00

Interactions vs disorder

disorder-driven transition in semimetals

W: strength of disorder $\Delta = t_z - m_z$: QPT parameter of SM-IN transition

global phase diagram of semi-Dirac semimetals

Physical Review B, 102, 085132 (2020); Journal of Physics: Condensed Matter, 33, 125601 (2021); Physical Review B, 107, 155125

(2023).

Random hopping in π -flux model

Summary 00

 π -flux model

$\pi-{\rm flux} \ {\rm model}$

$$t_{j+\hat{x},j} = (-1)^{j_x}$$
, $t_{j+\hat{y},j} = 1$, $\epsilon_{\pm}(k) = \pm 2t \sqrt{\cos^2 k_x + \cos^2 k_y}$

 $\pi ext{-flux model}$

Random hopping in $\pi\text{-flux}$ model 000000000

Summary 00

$$\pi$$
-flux model

$$\epsilon_{\pm}(k) = \pm t \sqrt{1 + 4\cos(\frac{k_x}{2})\cos(\frac{\sqrt{3}k_y}{2}) + 4\cos^2(\frac{k_x}{2})}$$

Random hopping in π -flux model

 $\pi ext{-flux model}$

Random hopping Dirac fermions on π -flux lattice

Gade's Model: $P[\delta t] \propto [-W, W]$, $\rho(E) = \frac{1}{E} exp(-cln|E|^{1/x}), \quad x = \frac{3}{2} \text{ or } 2?$

FIG. 1. The density of states $\rho(E)$ (with small imaginary part $\delta = 0.02$), where L = 50 and W = 0.7, 0.8, 0.9, and 1.0. We have fitted the data by the power-law form $\rho(E) = CE^{\mu(0)}$, where $\alpha(W) = 0.90$, 0.74, 0.55, and 0.39 for W = 0.7, 0.8, 0.9, and 1.0, respectively.

FIG. 4. Same as Fig. 3 on a 100×100 lattice for g=0.3-0.7, and δ =-0.005, averaged over 50 samples. Away from zero energy (E>0.1) and for sufficiently weak randomness, data are fitted to a power law $\rho(E) \approx |E|^2$ [. Inset: same as Fig. 3 on a 250×250 lattice for g=0.5, 0.51.05, 2, and δ =-0.005, averaged over 70 samples.

NPB 398, 499 (1993), PRL, 79 (19) (1997), PRB, 58 (11) (1998), PRB 65, 064206(2002), PRB 67, 064202 (2003);

PRL 113, 5, 186802 (2014), PRL 117, 5, 116806 (2016)

Random hopping in π -flux model

Summary 00

Lattice deformations and ripples

Lattice deformations

$$\Delta h \sim 1-4 \text{\AA}, \ u \sim 0.1-1 \text{\%}, \ L \sim 100 \text{nm}$$

- hybridized orbitals and "topological" defects.
- 2 modulate the on-site energies (ϵ_{ij}) and the hopping parameter (γ_{ij}) .
- opseudo magnetic field (gauge field)

```
F. Guinea, Solid State Commun., 152 (15) (2012)
```

Random hopping in $\pi\text{-flux}$ model 000000000

Lattice deformations and ripples

effective magnetic fields induced by the deformations

F. Guinea, Strain engineering in graphene, Solid State Commun., 152 (15) (2012)

Random hopping in π -flux model

Summary 00

Lattice deformations and ripples

Model of Ripples

Lattice deformations and ripples

Effects of Random Strain Fluctuations on mobility

Wang, L. et al, Phys. Rev. Lett. 124, 157701 (2020); Wang, L., et al. Commun. Phys. 4, 147 (2021)

Random hopping model

A graphene or π -flux model with bond disorder belongs to the **chiral orthogonal symmetry** class since time-reversal symmetry is preserved

$$\mathcal{H} = \mathcal{H}_0 + V = \sum_{\langle ij \rangle} c_i^{\dagger} t_{ij} c_j + V + h.c.$$

$$V = \sum_{\langle ij \rangle} \delta t_{ij} |i\rangle \langle j| + h.c., \ P[\delta t] \propto exp[-\delta t^2/2g_b]$$

LMTB (Lanczos method on Tight-binding)

- large-scale accurate simulation in real/momentum space
- strong disorder (non-purtubative, beyond SCBA)

Physical Review B, 85 073407 (2012)

Random hopping in π -flux model

Summary 00

Singularity of DOS

Average density of states

Random hopping in π -flux model

.

Singularity of DOS

Low energy DOS for weak disorder: Power Law

•
$$g_b = 0$$
, $\rho(E) = |E|$
• $g_b < g_b^c$, $\rho(E) = \rho_1 |E|^{\alpha}$, $\alpha = 1.05 - 1.24g_b$
• $g_b < g_b^c$, $\rho(E) = \rho_1 |E|^{\alpha}$, $\alpha = 1.05 - 1.24g_b$
• $g_b < g_b^{\alpha}$, $\rho(E) = \rho_1 |E|^{\alpha}$, $\alpha = 1.05 - 1.24g_b$
• $g_b = 0.00$

Born Approximation:

$$\rho(E) = -\frac{1}{\pi} \mathrm{Im} \langle G_{rr} \rangle = \frac{A_c \lambda}{2\pi v^2} \left(\frac{E}{\lambda}\right)^{1 - (2gA_c/\pi v^2)}$$

Random hopping in π -flux model

Singularity of DOS

Low energy DOS for strong disorder: Singularity

Gade's Model:
$$\rho(E) = \frac{1}{E} exp(-cln|E|^{1/x}), \quad x = \frac{3}{2} \text{ or } 2? \qquad x = \frac{3}{2}$$

Gade, et al, Nucl. Phys. B 398, 499 (1993); Mudry, et al, Phys. Rev. B 67, 064202 (2003)

16/24

Random hopping in π -flux model

Summary 00

Singularity of DOS

Low energy DOS for strong disorder

•
$$g_b > g_b^c$$
, $\rho(0) = \frac{A}{(B\gamma)^{\nu}}$, $B(g_b) = \frac{1}{(g_b - g_b^c)^{\kappa}}$
with critical exponent $\nu = 0.12$ and $A = 0.07$

Random hopping in π -flux model

Summary 00

Singularity of DOS

Crossover: semi-metal to diffusion metal

power-law behavior \rightarrow singular behavior

 $\rho(0)$ vs g for different γ

k-dependent self-energy and minimal conductivity

Accurate calculation of self-energy of Dirac fermions

spectral function and self-energy of strong disorder

Zhu et al., Phys. Rev. B 85 .073407 (2012)

Random hopping in π -flux model

Summary 00

k-dependent self-energy and minimal conductivity

k-dependent of self-energy

k-dependent self-energy and minimal conductivity

Born approximation of self-energy

self-energy function $\Sigma(\mathbf{k}, E) = G_0^{-1}(\mathbf{k}, E) - G^{-1}(\mathbf{k}, E)$ Random hopping disorder

$$\Re e\Sigma(k,E) = \gamma \left[-\frac{6E}{\pi} \ln \frac{\omega_c}{|E|} - \frac{3sa^2}{4\pi\hbar v_F} \left(\omega_c^2 + 2E^2 \ln \frac{\omega_c}{|E|} \right) k \right]$$

$$\Im m\Sigma(k,E) = -\gamma \left(3|E| + \frac{3sa^2}{4\pi\hbar v_F} E^2 k \right)$$

$$\gamma = \frac{A_c n_i}{4\pi^2 \hbar v_F} \frac{\pi}{\hbar^2 v_F^2} \frac{w^2}{12}$$

lattice disorder

$$\Sigma(k, E) = \gamma \left[-rac{2E}{\pi} \ln rac{\omega_c}{|E|} - i|E|
ight]$$

k-dependent self-energy and minimal conductivity

Minimal conductivity

Sample-dependent minimal conductivity $\sigma_{min} = \frac{1}{1-\alpha^2} \frac{4e^2}{\pi h}$

$$\Sigma(\mathbf{k}s, E) = \Sigma_1(E) - \alpha s \hbar v_F k + i \Sigma_2(E) = E - \mathbf{a} - \alpha s \hbar v_F k + i \eta$$

$$\sigma_{xx}^{0}(E) = \sigma_{xx}^{0,RA}(E) - \Re e[\sigma_{xx}^{0,RR}(E)]$$

= $\frac{2e^2}{\pi h} \frac{1}{1-\alpha^2} \left[1 + \left(\frac{a}{\eta} + \frac{\eta}{a}\right) \arctan \frac{a}{\eta} \right] = \frac{4e^2}{\pi h} \frac{1}{1-\alpha(g_b)^2} \Big|_{E\to 0}$

• scattering-independent value $\sigma_{min} = \frac{4e^2}{\pi h}$

- universal value $\sigma_{min} = \frac{4e^2}{h}$
- disorder-dependent value σ_{min}
- Experimental measurements : $\sigma_{min} \approx \frac{4e^2}{h} = C \times \frac{4e^2}{\pi h}, \ C = 1.7 \sim 10$

Nature 438,197 (2005), Nature 438,201 (2005), PNAS 102,10451(2005); PRL 99,216602(2007), PRL 98,076602(2007), PRL

98.256801(2007). PNAS 104.18392(2009)

Summary

Random hopping disorder in π -flux model

•
$$g_b = 0, \quad \rho(E) = |E|$$

• $g_b < g_b^c, \quad \rho(E) = \rho_1 |E|^{\alpha}, \ \alpha = 1.05 - 1.24g_b$
• $g_b > g_b^c, \quad \rho(0) = \frac{A}{(B\gamma)^{\nu}}, \ B(g_b) = \frac{1}{(g_b - g_b^c)^{\kappa}}$
• $g_b > g_b^c, \quad \rho(E) = \frac{1}{E} exp(-cln|E|^{2/3})$
• Crossover: semi-metal to diffusion metal

6 k-dependent self-energy and sample-dependent minimal conductivity

Singularity of density of states in the pi-flux lattice, to be submitted

Criticism or suggestion welcome!