

Xiangyu Xie :: Postdoc :: Photon Science Detector Group :: Paul Scherrer Institut

Hybrid Pixel Detector development at PSI & Enhanced spatial resolution via DL for electron microscopy

University of Science and Technology of China :: 2023.12.29

- Education
 - 2013-2017: BS, Physics, minor in Microelectronics, University of Science and Technology of China
 - 2017-2022: Ph.D., Experimental Particle Physics, University of Science and Technology of China
- Work experience
 - 2022-present: postdoctoral researcher, Photon Science
 Division detector group, Paul Scherrer Institut
- Research interest
 - Detector R&D, deep learning for detectors

- Hybrid pixel detector development for photon science at PSI
 - PSI and Photon Science detector group
 - Hybrid pixel detector developments at PSI
- Enhanced spatial resolution of MÖNCH via deep learning for electron microscopy
 - Sample preparation
 - Neural network design
 - Results evaluation

(Won 3rd prize in SLS photo contest Courtesy: Roberto)

Paul Scherrer Institut

- Paul Scherrer Institut, PSI, is the largest research center for natural and engineering sciences in Switzerland (2100 employees), belongs to the ETH domain, federal funded
- PSI is running Switzerland's large research facilities (neutrons, protons, muons, X-Rays)

XFEL: SwissFEL, 740m long

Synchrotron: SLS Swiss Light Source

2.4 GeV, 288 m circumference, ~20 beamlines

Photon Science Division detector group

- Develop detectors for the SLS and SwissFEL
 - Detector R&D
 - Design and production
 - Characterization and commissioning
- Other applications: electron microscopy

SwissFEL

Hybrid Pixel Detector

- Semiconductor sensor
 - Direct conversion
- Versatile readout ASICs
 - Fast signal processing
 - Fast readout
 - Radiation hardness
- Bump/Wire-bonding
 - Minimum pixel pitch $\approx 25 \; \mu m$
 - Noise due to input capacitance

Hybrid pixel detector

→ Sensor & ASICs can be optimized independently
 → Can be customized according to applications

Coutesy: A. Bergamaschi

Sensor developments

• Inadequate silicon sensor performance at "low" and "high" photon energies

Soft X-rays (250 eV – 2 keV):

- low quantum efficiency of Si
 Two technological developments
 - thin entrance window
 - inverse Low Gain Avalanche Diode (iLGAD) sensor

High-energy photons (> 20 keV):
 - limited stopping power of Si
 Material under investigations

 CdZnTe

- CdTe

- GaAs

Performance of high-Z sensors

	Energy resolution	Stability	Afterglow	Dark current	Availability
CdZnTe	٢		٢		\bigotimes
Schottky -500V		8	8	٢	٢
GaAs:C r -300V	(::	8	8	٢

Photon counting vs. Charge integrating detectors

Detector portfolio: Photon counting

	MYTHEN-3	PILATUS	EIGER	MATTERHORN
			· · · · · · · · · · · · · · · · · · ·	New New
Technology	UMC 110 nm	UMC 250 nm	UMC 250 nm	UMC 110 nm
Status	Modules available	Commercially available ¹	Commercially available ¹	Prototyping phase
Pixel size	50 μm (Strips)	172 x 172 μm²	75 x 75 μm²	75 x 75 μm²
Maximum system size	120° (=48 modules)	6M (=42 x 43 cm ²)	9M (=23 x 23 cm ²)	
Minimum threshold	< 4 keV	< 2 keV	< 2.5 keV	
Count rate capability	>2 MHz/Strip (10% deviation, Standard)	0.5-1.0 MHz/Pixel (10% deviation)	0.2-0.7 MHz/Pixel (10% deviation)	
Maximum frame rate	300 kHz (8-bit)	300 Hz/Module	23 kHz (1-bit)	

¹⁾ PILATUS and EIGER are commercially available at Dectris.

Detector portfolio: Charge integrating

	GOTTHARD-2	AGIPD ¹	JUNGFRAU	MÖNCH
Technology	UMC 110 nm	IBM 130 nm	UMC 110 nm	UMC 110 nm
Status	Modules available	Modules available	Modules available	Prototyping phase
Pixel size	50 / 25 µm (Strips)	200 x 200 μm²	75 x 75 μm²	25 x 25 μm²
Maximum system size	10 / 20 ASICs	1Mpixel	16Mpixel	
Noise (r.m.s.)	~ 270 e ⁻ ENC @ 4.5 MHz	< 322 e ⁻ ENC < 214 e ⁻ ENC (HG)	< 100 e ⁻ ENC (G0) < 55 e ⁻ ENC (HG0)	
Dynamic range	< 1 [.] 10 ⁴ x 12.4 keV (3 gain stages)	< 1.10 ⁴ x 12.4 keV (3 gain stages)	< 1.10 ⁴ x 12.4 keV (3 gain stages)	
Maximum frame rate	400 kHz (cont.) 4.5 MHz (burst)	< 5 MHz (burst*) * 352 frames	2.4 kHz (cont.) < 1 MHz (burst)	

¹⁾ Common development with University of Bonn, University of Hamburg and DESY

Alice1LHCb Medipix 1

CERN

double

pixels

32 data

Pilatus I

PSI

August 2023

Missing: Anna, Bernd, Jiaguo, Aldo, Christian, Carlos, Davide, Dhanya, Roberto, Konstantinos...

- Hybrid pixel dete
 - PSI and the PS
 - Hybrid pixel de
- Enhanced spatia
 - Sample prepar
 - Neural networ
 - Results evalua

ectron microscopy

Direct Electron Detector for Electron Microscopy, the "resolution revolution"

- Monolithic Active Pixel Senor (MAPS)
 - Widely applied for (cryo-)imaging and diffraction measurements
 - K2, Falcon...
 - Good spatial resolution \square
 - Pixel size usually < 15 pate availability
 - Limited frame rate
 - Poor radiation hardness

- Hybrid Pixel Detector (HPD)
 - Getting popular for diffraction measurements
 - JUNGFRAU, Medipix...
 - High dynamic range and frame rate
 - Goodinadiation hardness - Poor resolution
 - Large pixel size usually $\geq 55~\mu m$
 - Electron multiple scattering

Dynamic range

MAPS

HPD

Resolution

Frame rate

MÖNCH, towards a universal detector for diffraction and imaging

- MÖNCH, a HPD with much smaller pixel
 - $-\,25~\mu m$ pitch size
 - -400 imes 400 pixels per tile
 - Charge integration, 14 bit, up to 6 kHz
- Lateral track due to multiple scattering

– Poor resolution for e^- with E > 80 keV

- **Deep learning** to reconstruct position
 - From the complex pattern to learn
 - Nature of energy deposition
 - Charge diffusion
 - Aim at subpixel resolution

Project members

• Funded as a Swiss Data Science Center(SDSC) project

SDSC hub @ PSI

Dr. Carl Remlinger

PSI Electron Microscope Facility group

PSI Photon Science Division Detector group

Project overview

- Deep learning development
 - Neural network candidate models
 - A baseline model (results discussed in this report)
 - Auto-encoder
 - ...
 - Samples preparation
 - Simulation and experimental
 - Key: the ground truth impact point

- Characterization
 - Spatial resolution
 - Detective quantum efficiency
 - Standard sample imaging
- Deployment & dissemination
 - Data processing pipeline(WIP)

Baseline neural network model

Simulation-based: samples analysis

- Simulation setup
 - Geant4 + charge diffusion model
 - 320 μm silicon sensor
 - $-V_{\text{bias}} = 90 \text{ V}$
 - Start with 200 $keV\,electrons$
 - Total samples: 4M
 - 70%/30% for training/testing
- Simulation analysis
 - $-\sim 15\%$ backscattered electrons
 - Charge centroid gives $\sigma_x = 1.73$ pixel

Simulation-based: training and results

- Training setup
 - 100 epochs/iterations
 - Data augmentation
 - Rotation and flipping
 - Training label smoothing
 - Synthetic noise ($\sigma=0.18~{
 m keV}$)
- Simulation-based results
 - No significant overfitting
 - Deep learning gives $\sigma_{\chi}=0.47$ pixel
 - Fully deposited e^- : $\sigma_{\chi} = 0.37$
 - Backscattered e^- : $\sigma_{\chi} = 0.83$

Experiment-based: data taking setup

- EM: Jeol JEM ARM200F
 - $-200 \ keV$ beam
 - Customized alignments
 - Narrow beam ($\sim \mu m$)
- Detector: MÖNCH v0.3
 - One tile; 400×400 pixels
 - $-V_{\text{bias}} = 90 \text{ V}$
- Ground truth impact points obtaining
 - EM randomly scans with longer dwell time (~s)
 - -430 scan points \times 10,000 frames
 - Unbiased ground truth position: \bar{x} , \bar{y}

Experiment-based: sample analysis

- Frame level
 - Mask malfunction region
 - Pedestal subtraction
 - Energy conversion
- Cluster finding and selection
 - Adjacent pixels over a threshold of $5 \times \text{Noise} \approx 0.9 \text{ keV}$ (g2_lc_hg mode)
 - $-20 \text{ keV} < E_{\text{cluster}} < 220 \text{ keV}$
 - Outlier filtered
- Total samples: $\sim 1M$
 - Charge centroid gives $\sigma_{\chi} = 1.83$ pixel

Experiment-based: deep learning results

- Training setup
 - -100 epochs
 - Data augmentation
 - Rotation and flipping
 - Training label smoothing
- Experiment-based results
 - No significant overfitting
 - Deep learning give $\sigma_{\chi} = 0.60$ pixel
- Independent knife-edge measurements
 - Sample processed by the trained model
 - Edge spread function gives σ_x =
 0.58 pixel

Preliminary MTF and DQE results (200 keV)

 $\mathsf{MTF}(\omega) = \mathcal{F}[\mathsf{PSF}(x)]$

$$DQE(\omega) = MTF^{2}(\omega) \frac{d_{n}^{2}}{nNPS(\omega)}$$

 $Flux = \sim 10 e^{-}/s/pixel$

Results from the experimental data

• TEM sample with continuous carbon and gold nanoparticles

With deep learning, we can see the ring corresponding to 2.35 Å atom arrangements

• Significant improvements in spatial resolution on MÖNCH, via deep learning

@ 200 keV	Charge centroid	Deep learning + super resolution			
		Simulation based model	Experiment based model	Knife-edge with experi. model	
σ_x [pixel]	1.83	0.70	0.60	0.58	

- Promising performance for energies lower than $200\;keV$
- Outlook
 - Detector calibration
 - Simulation development
 - Challenge: large MÖNCH module

Design and build detectors in-house

Work done at PSI:

- sensor design
- ASIC design
- readout boards
- flip-chip bonding
- wire-bonding
- mechanics
- assembly
- firmware
- control software

╋

- calibration
- integration/commissioning
- user support/interface Sensor

ASIC

Deep learning workflow

Backup Deep learning components

- Dataset
 - Inputs X: signal waveforms, images, texts ...
 - Labels y: time, position, cat/dog ...
 - Known as ground truth in supervised learning
- Neural network model
 - Composes of inter-connected neuron layers
 - Each neuron layer has
 - Weight $W^{[l]}$, bias $B^{[l]}$
 - Activation function g
- Loss function + optimizer
 - Loss function F to evaluate loss J
 - F: RMSE, cross-entropy ...
 - J: difference between predictions and labels
 - Optimizer: the pilot to update the model

Backup: Deep learning training processes

- Forward propagation:
 - $-Z^{[l]} = B^{[l]} + W^{[l]}A^{[l-1]}$
 - $-A^{[l]} = g(Z^{[l]})$
- Backward propagation:
 - Loss evaluation: $J = F(\hat{y}, y)$
 - Optimizing: $W \leftarrow W \alpha \frac{\partial J}{\partial W}, \frac{\partial J}{\partial W} = \frac{\partial J}{\partial A} \frac{\partial A}{\partial Z} \frac{\partial Z}{\partial W},$ α : learning rate, usually $0.001 < \alpha < 0.1$
- Targets
 - To optimize the model to minimize loss
 - To predict well for untrained data, i.e., good generalization ability

Backup: CNN kernel

0	30	30	0
0	30	30	0
0	30	30	0
0	30	30	0

=

Kernel for vertical detection

Results

- Kernel
 - At early stages, CV experts manually designed kernel
 - In ML, dozens of kernels could be automatically formed during training
- Combination of results distinguish pattern in complex images