

Spin polarization and spin alignment from hydrodynamic studies

报告人:易聪 指导老师:浦实教授

中国科学技术大学 USTC-PNP-Nuclear Physics Mini Workshop Series 2024年1月13日

Outline

• **Introduction**

- **Hydrodynamic contributions to the spin polarization of A hyperons**
- **Hydrodynamic contributions to the spin** alignment of ϕ mesons
- **Summary**

Global Polarization

• **Global Spin Polarization of Λ Hyperons**

Z.-T. Liang and X.-N. Wang, Phys. Rev. Lett. a94, 102301 (2005) STAR, L. Adamczyk et al., Nature (London) 548, 62 (2017).

I. Karpenko and F. Becattini, Eur. Phys. J. C 77, 213 (2017). H. Li, L.-G. Pang, Q. Wang, and X.-L. Xia, Phys. Rev. C 96, 054908 (2017). Y. Xie, D. Wang, and L. P. Csernai, Phys. Rev. C 95, 031901(R) (2017). Y. Sun and C. M. Ko, Phys. Rev. C 96, 024906 (2017) S. Shi, K. Li, and J. Liao, Phys. Lett. B 788, 409 (2019).

易聪 Spin polarization and spin alignment from hydrodynamic studies 3/25

Local Polarization

STAR, J. Adam et al., Phys. Rev. Lett. 123, 132301.

Hydrodynamic Effects

Recalling the original spin polarization distribution in phase space

$$
\mathcal{S}^{\mu}(\mathbf{p}) = \frac{\int d\Sigma \cdot p \overline{\mathcal{J}_{5}^{\mu}(p;X)} \cdot \cdots \cdot \rightarrow \mathbf{Axial current}
$$

F. Becattini, V. Chandra, L. Del Zanna, and E. Grossi, Annals Phys. 338, 32 (2013). R.-H. Fang, L.-G. Pang, Q. Wang, and X.-N. Wang, Phys. Rev. C94, 024904 (2016)

The axial currents at the local equilibrium can be decomposed as

Y. Hidaka, S. Pu, and D.-L. Yang, Phys. Rev. D97, 016004 (2018) S. Y. F. Liu, Y. Yin, PRD 104, 054043 (2021) F. Becattini, M. Buzzegoli, A. Palermo, Phys. Lett. B 820 (2021) 136519 S. Y. F. Liu, Y. Yin, JHEP 07 (2021) 188.

Outline

- **Introduction**
- **Hydrodynamic contributions to the spin polarization of A hyperons**
- **Hydrodynamic contributions to the spin** alignment of ϕ mesons
- **Summary**

Hydrodynamic Effect

• **Hydrodynamic contributions to the local spin polarization**

$$
\beta_\mu = \frac{u_\mu}{T} \qquad \varpi_{\mu\nu} = -\frac{1}{2} \left(\partial_\mu \beta_\nu - \partial_\nu \beta_\mu \right).
$$

$$
\omega_{\rho\sigma}=\frac{1}{2}\left(\partial_\sigma u_\rho-\partial_\rho u_\sigma\right)
$$

Considering shear induced polarization under some assumptions, the theoretical calculations agree with the experimental data qualitatively/quantitatively.

Setup of Simulation

• **(3+1) dimensional viscous hydrodynamic framework CLVisc**

Solve the Energy-momentum conservation and net baryon current:

 $\nabla_{\mu}T^{\mu\nu}=0$ $T^{\mu\nu}=eU^{\mu}U^{\nu}-P\Delta^{\mu\nu}+\pi^{\mu\nu}$ $\nabla_{\mu}J^{\mu}=0$ $J^{\mu} = nU^{\mu} + V^{\mu}$

Equation of motion of dissipative current:

$$
\Delta_{\alpha\beta}^{\mu\nu}D\pi^{\alpha\beta} = -\frac{1}{\tau_{\pi}}\left(\pi^{\mu\nu} - \eta\sigma^{\mu\nu}\right) - \frac{4}{3}\pi^{\mu\nu}\theta - \frac{5}{7}\pi^{\alpha\langle}\sigma_{\alpha}^{\mu\nu}\rangle + \frac{9}{70}\frac{4}{e + P}\pi_{\alpha}^{\langle\mu}\pi^{\nu\rangle\alpha}
$$

$$
\Delta^{\mu\nu}DV_{\mu} = -\frac{1}{\tau_{V}}\left(V^{\mu} - \kappa_{B}\nabla^{\mu}\frac{\mu}{T}\right) - V^{\mu}\theta - \frac{3}{10}V_{\nu}\sigma^{\mu\nu}
$$

• **Setup**

Initial condition: AMPT, SMASH Freeze out condition : e<0.4GeV/fm^3 Equation of State: NEOS BQS, sp95-pce

L. Pang, Q. Wang, and X.-N. Wang, Phys. Rev. C 86, 024911 X.-Y. Wu, G.-Y. Qin, L.-G. Pang, and X.-N. Wang, Phys. Rev. C 105, 034909

Simulation

 \cdot

• **Spin Polarization Vector**

$$
\mathcal{S}_{\text{thermal}}^{\mu}(\mathbf{p}) = \int d\Sigma^{\sigma} F_{\sigma} \epsilon^{\mu\nu\alpha\beta} p_{\nu} \partial_{\alpha} \frac{u_{\beta}}{T},
$$
\n
$$
\mathcal{S}_{\text{shear}}^{\mu}(\mathbf{p}) = \int d\Sigma^{\sigma} F_{\sigma} \frac{\epsilon^{\mu\nu\alpha\beta} p_{\nu} u_{\beta}}{(u \cdot p)T}
$$
\n
$$
\times p^{\rho} (\partial_{\rho} u_{\alpha} + \partial_{\alpha} u_{\rho} - u_{\rho} D u_{\alpha})
$$
\n
$$
\mathcal{S}_{\text{accT}}^{\mu}(\mathbf{p}) = -\int d\Sigma^{\sigma} F_{\sigma} \frac{\epsilon^{\mu\nu\alpha\beta} p_{\nu} u_{\alpha}}{T} \left(D u_{\beta} - \frac{\partial_{\beta} T}{T} \right)
$$
\n
$$
\mathcal{S}_{\text{chemical}}^{\mu}(\mathbf{p}) = 2 \int d\Sigma^{\sigma} F_{\sigma} \frac{1}{(u \cdot p)} \epsilon^{\mu\nu\alpha\beta} p_{\alpha} u_{\beta} \partial_{\nu} \frac{\mu}{T},
$$

$$
F^{\mu} = \frac{\hbar}{8m_{\Lambda}\Phi(\mathbf{p})}p^{\mu}f_{eq}(1 - f_{eq}),
$$

$$
\Phi(\mathbf{p}) = \int d\Sigma^{\mu}p_{\mu}f_{eq}.
$$

• **Global Polarization** • **Local Polarization**

$$
\langle \vec{P} \rangle = \frac{\int_0^{2\pi} d\phi \int_{y_{\rm min}}^{y_{\rm max}} dy \int_{p_{T\rm min}}^{p_{T\rm max}} p_T dp_T [\Phi(\mathbf{p}) \vec{P}^*(\mathbf{p})]}{\int_0^{2\pi} d\phi \int_{y_{\rm min}}^{y_{\rm max}} dy \int_{p_{T\rm min}}^{p_{T\rm max}} p_T dp_T \Phi(\mathbf{p})}
$$

$$
\langle \vec{P}(\phi_p) \rangle = \frac{\int_{y_{\min}}^{y_{\max}} dy \int_{p_{T_{\min}}}^{p_{T_{\max}}} p_T dp_T [\Phi(\mathbf{p}) \vec{P}^*(\mathbf{p})]}{\int_{y_{\min}}^{y_{\max}} dy \int_{p_{T_{\min}}}^{p_{T_{\max}}} p_T dp_T \Phi(\mathbf{p})}
$$

Global Polarization

STAR, M. S. Abdallah et al., Phys. Rev. C 104, L061901.

X.-Y. Wu, CY, G.-Y. Qin, and S. Pu, Phys. Rev .C 105 6, 064909

 The influence of these new effects on the global polarization is small. The theoretical calculations are consistent with the experimental results in both two cases.

Local Polarization

Local Polarization

 The local longitudinal polarization contributed by chemical gradient depends on initial conditions strongly

Vortical Structure

Local Helicity polarization

Helicity polarization is the projection of the spin polarization vector in the direction of momentum.

The original idea for helicity polarization is proposed to probe the initial chiral chemical potential.

$$
S^h = \hat{\mathbf{p}} \cdot \mathbf{S}(\mathbf{p}) = \hat{p}^x \mathcal{S}^x + \hat{p}^y \mathcal{S}^y + \hat{p}^z \mathcal{S}^z \qquad S^h = S^h_{\text{hydro}} + S^h_{\chi}
$$

F. Becattini, M. Buzzegoli, A. Palermo, and G. Prokhorov, Phys. Lett. B 826, 136909 J.-H. Gao, Phys. Rev. D 104, 076016

Hydrodynamic helicity polarization

Helicity polarization induced by thermal vorticity, shear viscous tensor, fluid acceleration and spin hall effect CY , X.Y. Wu, D.-L. Yang, J.H. Gao, S. Pu, G.Y. Qin, 2304.08777.

$$
S_{\text{thermal}}^{h}(\mathbf{p}) = \int d\Sigma^{\sigma} F_{\sigma} p_{0} \epsilon^{0ijk} \hat{p}_{i} \partial_{j} \left(\frac{u_{k}}{T}\right),
$$

\n
$$
S_{\text{shear}}^{h}(\mathbf{p}) = -\int d\Sigma^{\sigma} F_{\sigma} \frac{\epsilon^{0ijk} \hat{p}^{i} p_{0}}{(u \cdot p)T} (p^{\sigma} \pi_{\sigma j} u_{k}),
$$

\n
$$
S_{\text{acc}}^{h}(\mathbf{p}) = \int d\Sigma^{\sigma} F_{\sigma} \frac{\epsilon^{0ijk} \hat{p}^{i} p_{0} u_{j}}{T} \left[(u \cdot \partial) u_{k} + \frac{\partial_{k} T}{T} \right],
$$

\n
$$
S_{\text{chemical}}^{h}(\mathbf{p}) = -2 \int d\Sigma^{\sigma} F_{\sigma} \frac{p_{0} \epsilon^{0ijk} \hat{p}_{i}}{(u \cdot p)} \partial_{j} \left(\frac{\mu}{T}\right) u_{k}, \qquad (4)
$$

• **Kinetic vorticity**

$$
S_{\nabla T}^{h}(\mathbf{p}) = \int d\Sigma^{\sigma} F_{\sigma} \frac{p_{0}}{T^{2}} \widehat{\mathbf{p}} \cdot (\mathbf{u} \times \nabla T),
$$
 Kinetic vorticity

$$
S_{\omega}^{h}(\mathbf{p}) = \int d\Sigma^{\sigma} F_{\sigma} \frac{p_{0}}{T} \widehat{\mathbf{p}} \underbrace{(\omega,)} - \cdots - \rightarrow \nabla \times \mathbf{u}
$$

Numerical results

• **Helicity polarization across RHIC-BES energies**

7.7 GeV 19.6 GeV 39 GeV 20-50% Au+Au @39 GeV $30 -$ 20-50% Au+Au @19.6 GeV $30 -$ 20-50% Au+Au @7.7 GeV SMASH IC $C_B = 0.0$ SMASH IC $C_B = 0.0$ SMASH IC $C_B = 0.0$ $|Y|$ < 1 0.5 < p_T < 3 GeV 20⊣ $|Y|$ < 1 0.5 < p_T < 3 GeV $W_{\epsilon,1}^{0.5}$ $^{0.5}_{0.7}$ $^{0.3}_{0.9}$ $^{0.6}_{0.7}$ $^{0.5}_{0.9}$ $^{0.7}_{0.9}$ $20 20 10$ $10E$ $10²$ $P_H(10^{-3})$ $P_H(10^{-3})$ $P_H(10^{-3})$ $-10⁺$ -10 w.o. ω w.o. ω -20 $-20F$ -20 ω only ω onlv ω only $-30C$ (c) $-30-(a)$ -30 <u>111111111</u> 5 Kinetic vorticity $\frac{2\int_{Y_{\rm min}}^{Y_{\rm max}} dY \int_{p_{T\rm min}}^{p_{T\rm max}} p_T dp_T [\Phi({\bf p}) S^h_{\rm hydro}] }{\int_{Y_{\rm min}}^{Y_{\rm max}} dY \int_{p_{T\rm min}}^{p_{T\rm max}} p_T dp_T \Phi({\bf p})}$ $P_H(\phi_p) =$

- **Helicity polarization induced by kinetic vorticity dominates at BES energies**
- **Helicity polarization induced by kinetic vorticity increases as the collision energy decreases**
- **Helicity polarization induced by other contributions is almost vanishing**

CY , X.Y. Wu, D.-L. Yang, J.H. Gao, S. Pu, G.Y. Qin, 2304.08777.

Numerical results

• Different parameters CY, X.Y. Wu, D.-L. Yang, J.H. Gao, S. Pu, G.Y. Qin, 2304.08777.

SMASH IC + CB=0 AMPT IC + CB=0 SMASH IC + CB=1.2 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, ,,,,,,,,,,,,,,,,,,,,,,,, 20-50% Au+Au @7.7 GeV 20-50% Au+Au @7.7 GeV 20-50% Au+Au @7.7 GeV SMASH IC $C_B = 0.0$ AMPT IC $C_B = 0.0$ SMASH IC $C_B = 1.2$ $|Y|$ < 1 0.5 < p_T < 3 GeV $|Y|$ < 1 0.5 < p_T < 3 GeV $|Y|$ < 1 0.5 < p_T < 3 GeV $2⁺$ $P_H(10^{-3})$ $P_H(10^{-3})$ $P_H(10^{-3})$ chemical chemical chemical shear ∇T shear shear accT accT accT $\omega \times 0.1$

- **Helicity polarization induced by kinetic vorticity is approximately 10 times larger than that induced by other sources, and this conclusion is not dependent on the initial condition and baryon diffusion.**
- **A possible way to probe the fine vorticity structure of the QGP by measuring helicity polarization.**

Outline

- **Introduction**
- **Hydrodynamic contributions to the spin polarization of A hyperons**
- **Hydrodynamic contributions to the spin alignment of** ϕ **mesons**
- **Summary**

Various Sources

$$
\overline{\rho}_{00}^{\phi} = \frac{1}{3} + c_{\text{hydro}} + c_E + c_B + c_F + c_A + c_L + c_{\phi}
$$

The contribution of hydrodynamic gradient such as, SIP and SHE to the spin alignment have not been studied systematically.

 $\rho_{00}^y = \frac{1-\left\langle P_q^y P_{\bar q}^y \right\rangle + \left\langle P_q^x P_{\bar q}^x \right\rangle + \left\langle P_q^z P_{\bar q}^z \right\rangle}{3+\left\langle P_q^y P_{\bar q}^y \right\rangle + \left\langle P_q^x P_{\bar q}^x \right\rangle + \left\langle P_q^z P_{\bar q}^z \right\rangle}$

X.-L. Xia, H. Li, X.-G. Huang, H.-Z. Huang, PLB 817, 136325 (2021)

Liang and Wang, Phys. Lett. B629, 20 (2005) Becattini, Csernai, Wang Phys. Rev. C 88 , 034905 (2013) Yang, Fang, Wang, Wang, Phys. Rev. C97, 034917 (2018) Sheng, Luica, Wang Phys. Rev. D 101 096005 (2020) Xia, Li, Huang, Huang Phys. Lett. B 817, 136325 (2021) Gao Phys. Rev. D 104, 076016 (2021) Li, Liu 2206.11890. (2022); Müller, Yang Phys. Rev. D 105 , L011901(2022) Kumar, Müller, Yang, Phys. Rev. D 107, 076025 (2023) Wager, et. al. Acta Phys. Polon. Supp. 16, 42 (2023) X.-L. Sheng,, L. Oliva, Q.Wang, PRD 101, 096005 (2020)

Contributions from effective meson field can reproduce the most of experimental data for spin alignment of ϕ **meson**

易聪 Spin polarization and spin alignment from hydrodynamic studies 19/25

Formalism

Spin density matrix (normalized MVSD) for ϕ mesons given by spin Boltzmann equation for the coalescence and dissociation process:

$$
S + \overline{S} \rightleftharpoons \phi
$$

$$
\rho_{\lambda_1 \lambda_2}^{\phi}(x, \mathbf{p}) \propto \frac{\Delta t}{32} \int \frac{d^3 \mathbf{p}'}{(2\pi \hbar)^3} \frac{1}{E_{\eta'}^{\overline{s}} E_{\mathbf{p} - \mathbf{p}'}^s E_{p}^{\phi}} f_{\overline{s}}(x, \mathbf{p}') f_s(x, \mathbf{p} - \mathbf{p}')
$$

 $\times 2\pi\hbar\delta\left(E_{p}^{\phi}-E_{p'}^{\bar{s}}-E_{\mathbf{p}-\mathbf{p}'}^{s}\right)\epsilon_{\alpha}^{*}\left(\lambda_{1},\mathbf{p}\right)\epsilon_{\beta}\left(\lambda_{2},\mathbf{p}\right)$

 $\times [(p-p')\cdot \gamma + m_s] [1+\gamma_5 \gamma \cdot \overline{P^s(x; \mathbf{p} - \mathbf{p}')}]\},$

 \times Tr $\left\{\Gamma^\beta\left(p'\cdot\gamma-m_{\bar{s}}\right)\left[1+\gamma_5\gamma\cdot\overline{P^{\bar{s}}\left[x,\mathbf{p}'\right]}\right]\mathbf{F}^{\alpha}\right\}$

Distribution function of s and \bar{s} quarks

Spin polarization of s and \bar{s} quarks

• **Spin polarization vector for s quarks:**

$$
P_s^{\mu}(x, \mathbf{p}) = \frac{1}{2m_s} \widetilde{\omega}_s^{\mu\nu} p_{\nu},
$$

\n
$$
P_{\bar{s}}^{\mu}(x, \mathbf{p}) = \frac{1}{2m_s} \widetilde{\omega}_s^{\mu\nu} p_{\nu},
$$

\n
$$
P_{\bar{s}}^{\mu}(x, \mathbf{p}) = \frac{1}{2m_s} \widetilde{\omega}_s^{\mu\nu} p_{\nu},
$$

\n
$$
P_{\bar{s}}^{\mu}(x, \mathbf{p}) = \frac{1}{2m_s} \widetilde{\omega}_s^{\mu\nu} p_{\nu},
$$

\n
$$
P_{\bar{s}}^{\mu}(x, \mathbf{p}) = \frac{1}{2m_s} \widetilde{\omega}_s^{\mu\nu} p_{\nu},
$$

with

$$
\omega_{\alpha\beta}^{s/\bar{s}}\ (x,p) = \ \omega_{\alpha\beta}^{\rm th} + \omega_{\alpha\beta}^{\rm shear} + \omega_{\alpha\beta}^{\rm accr} \pm \omega_{\alpha\beta}^{\rm chemical}
$$

$$
<\overline{\rho}_{00}^{\phi}(\sqrt{s_{NN}})> \; = \; \frac{\int_{y_{\rm min}}^{y_{\rm max}} dy \int_{p_{T\rm min}}^{p_{T\rm max}} p_T dp_T \int d\phi \int d\Sigma \cdot p f_{eq}^{\phi} \overline{\rho}_{00}^{\phi}(x,{\bf p})}{\int_{y_{\rm min}}^{y_{\rm max}} dy \int_{p_{T\rm min}}^{p_{T\rm max}} p_T dp_T \int d\phi \int d\Sigma \cdot p f_{eq}^{\phi}},
$$

X.-L. Sheng, L. Oliva, Z.-T. Liang, Q. Wang, and X.-N. Wang, Phys. Rev. Lett. 131, 042304 (2023). X.-L. Sheng, L. Oliva, Z.-T. Liang, Q. Wang, and X.-N. Wang, 2206.05868, (2022).

易聪 Spin polarization and spin alignment from hydrodynamic studies 20/25

Hydrodynamic contribution (I)

• Hydrodynamic contrition to $\bm{\rho}_{\bm{0}\bm{0}}$ – $\mathbf{1}$ $\frac{1}{3}$ as a function of $\,p_{\scriptsize T}^{}$

$$
\langle \overline{\rho}_{00}^{\phi}(p_T) \rangle = \frac{\int_{y_{\min}}^{y_{\max}} dy \int d\phi \int d\Sigma \cdot p f_{eq}^{\phi} \overline{\rho}_{00}^{\phi}(x, \mathbf{p})}{\int_{y_{\min}}^{y_{\max}} dy \int d\phi \int d\Sigma \cdot p f_{eq}^{\phi}}
$$

Differences caused by the hydrodynamic contributions

- **The contribution of hydrodynamic effect is at order of** −− **in large transverse momentum.**
- **The theoretical calculations included the hydrodynamic contributions are consistent with the experimental data better.**

Hydrodynamic contribution (II)

• Hydrodynamic contrition to ρ_{00} – $\mathbf{1}$ 3 **as a function of collision energy**

- **≻** The thermal vorticity contributes to $\rho_{00} \frac{1}{3}$ 3 > 0 at the order of 10^{-4} and the **magnitude increases with increasing collision energy.**
- ρ The total hydrodynamic contributions to the ρ_{00} $\frac{1}{3}$ 3 **is negative.**

Outline

- **Introduction**
- **Hydrodynamic contributions to the spin polarization of A hyperons**
- **Hydrodynamic contributions to the spin** alignment for ϕ mesons
- **Summary**

Summary

Spin Polarization of A hyperons

- \triangleright Shear induced polarization always gives a "correct" sign.
- \triangleright The local spin polarization has not been fully understood.
- The spin hall effect plays an important role in the low energy collisions.
- \triangleright Helicity polarization is mainly contributed by the kinetic vorticity at low energy collisions.
- \triangleright Helicity polarization is a possible way to probe the fine vortical structure of QGP.

• **Spin Alignment of mesons**

- The theoretical calculations included the hydrodynamic contributions are consistent with the experimental data better in p_T dependence.
- \triangleright Global $\rho_{00} \frac{1}{3}$ $\frac{1}{3}$ contributed by hydrodynamic effects is at the order of -10^{-4} .

Thanks for your time !