

1

Experimental search of CME at RHIC

Jie Zhao

Jan. 13, 2024

- > Quark degree of freedom, χ -symmetry
- QCD vacuum fluctuations,

Topological gluon field, Q_w≠0.

Local P, CP violations

USTC 2024

d_

d

U,

dR

3

Q_≠0

How to measure CME?

S. A. Voloshin, Phys.Rev. C 70 (2004) 057901

The sign of Q_w can vary event to event and domain to domain \rightarrow one has to measure correlations

$$\gamma = \left\langle \cos(\varphi_{\alpha} + \varphi_{\beta} - 2\psi_{RP}) \right\rangle$$

φ represents the azimuthal angle $\Delta \underline{\gamma} = \gamma^{+-} - \gamma^{++/--} = 2 > 0$ α, β denote the charge of the particles, with combination of +-(-+), ++, --

 $\gamma^{+-} = \cos(\pi^+ + \pi^- - 0) = \cos(360^\circ) = +1$

 $\gamma^{++} = \cos(\pi^+ + \pi^+ - 0) = \cos(180^\circ) = -1$

Early measurements

STAR collaboration, PRL 103(2009)251601; PRC 81(2010)54908; PRC 88 (2013) 64911

Qualitatively consistent with CME expectations

S. A. Voloshin, PRC 70, 057901 (2004)
F. Wang, PRC 81, 064902 (2010)
A. Bzdak, V. Koch and J. Liao, PRC 83, 014905 (2011)
S. Schlichting and S. Pratt, PRC 83, 014913 (2011)
F. Wang, J. Zhao, PRC 95,051901(R) (2017)

$$= \left\langle \cos(\varphi_{\alpha} + \varphi_{\beta} - 2\psi_{RP}) \right\rangle$$

$$= \frac{N_{cluster}}{N_{\alpha}N_{\beta}} \left\langle \cos(\varphi_{\alpha} + \varphi_{\beta} - 2\varphi_{cluster}) \cos(2\varphi_{cluster} - 2\psi_{RP}) \right\rangle$$

$$= \frac{V_{cluster}}{N_{\alpha}N_{\beta}} \left\langle \cos(\varphi_{\alpha} + \varphi_{\beta} - 2\varphi_{cluster}) \cos(2\varphi_{cluster} - 2\psi_{RP}) \right\rangle$$

$$= \frac{V_{cluster}}{V_{\alpha}N_{\beta}} \left\langle \cos(\varphi_{\alpha} + \varphi_{\beta} - 2\varphi_{cluster}) \cos(2\varphi_{cluster} - 2\psi_{RP}) \right\rangle$$

$$= \frac{V_{cluster}}{V_{\alpha}N_{\beta}} \left\langle \cos(\varphi_{\alpha} + \varphi_{\beta} - 2\varphi_{cluster}) \cos(2\varphi_{cluster} - 2\psi_{RP}) \right\rangle$$

$$= \frac{V_{cluster}}{V_{\alpha}N_{\beta}} \left\langle \cos(\varphi_{\alpha} + \varphi_{\beta} - 2\varphi_{cluster}) \cos(2\varphi_{cluster} - 2\psi_{RP}) \right\rangle$$

$$= \frac{V_{cluster}}{V_{\alpha}N_{\beta}} \left\langle \cos(\varphi_{\alpha} + \varphi_{\beta} - 2\varphi_{cluster}) \cos(2\varphi_{cluster} - 2\psi_{RP}) \right\rangle$$

$$= \frac{V_{cluster}}{V_{\alpha}N_{\beta}} \left\langle \cos(\varphi_{\alpha} + \varphi_{\beta} - 2\varphi_{cluster}) \cos(2\varphi_{cluster} - 2\psi_{RP}) \right\rangle$$

$$= \frac{V_{cluster}}{V_{\alpha}N_{\beta}} \left\langle \cos(\varphi_{\alpha} + \varphi_{\beta} - 2\varphi_{cluster}) \cos(2\varphi_{cluster} - 2\psi_{RP}) \right\rangle$$

 \geq Background from two-particle correlation coupled with v₂ \triangleright Remove background by selecting on $v_2^2=0$ (event shape)

Background issue, event-by-event v₂

STAR, PRC 89,044908 (2014)

F. Wang, J. Zhao, PRC 95 (2017) 051901(R)

- > Charge correlator linear as function of event-by-event v_2 (v_2^{obs} or $v_{2,ebye}$)
- > suggests large v_2 background contributions
- > By selecting the events with $v_2^{obs} = 0$, the correlator is largely reduced, but not totally eliminated, as background ~ $v_{2,\rho}$ not $v_{2,\pi}$

Search for the CME

Invariant mass method

- $\succ \Delta \gamma$ with respect to Ψ_{RP} (ZDC) and Ψ_{PP} (TPC)
- CME in isobar collisions

> Event-Shape-Engineering

Invariant mass method

> Identify the background by invariant mass of α + β pairs

Explicit demonstration of "resonance" background

Isolate the CME from background

STAR, Phys. Rev. C 106 (2022) 034908

 $\Delta \gamma(\mathbf{m}) = \underline{r(\mathbf{m})^* \cos(\alpha + \beta - 2\phi_{reso.})^* \underline{v}_{2,reso.}} + CME$ Background shape

Bkg. shape: $\Delta \gamma_{A} - \Delta \gamma_{B}$ (A,B select by q₂)

Fit $\Delta \gamma = k^* (\Delta \gamma_A - \Delta \gamma_B) + CME$

J. Zhao, H. Li, F. Wang, EPJC (2019) 79:168

CME signal fraction is ~15% at 95% C.L.

USTC 2024

ψ Use Ψ_{PP} and Ψ_{RP} to solve Bkg and CME

H-J Xu, J. Zhao, X. Wang, H. Li, Z. Lin, C. Shen and F. Wang, CPC 42 (2018) 084103 H-J Xu, X. Wang, H. Li, J. Zhao, Z. Lin, C. Shen and F. Wang, PRL 121 (2018) 022301

B. Alver et al. (PHOBOS), PRL 98, 242302 (2007).

 \succ Δγ w.r.t. TPC Ψ_{EP} (proxy of Ψ_{PP}) and ZDC Ψ₁ (proxy of Ψ_{RP}) contain different fractions of CME and Bkg

$\Delta\gamma$ with respect to Ψ_{PP} and Ψ_{RP}

STAR collaboration, PRL. 128, 092301 (2022)

➢ possible CME signal is 5-10% of the early measurements, with1-3σ significance, may still have non-flow contributions

Expect 20B from 2023+25 runs, more precise conclusion

CME in isobar collisions

STAR , Phys. Rev. C 105 (2022) 14901

S. A. Voloshin, Phys.Rev. Lett. 105, 172301 (2010)

W-T Deng, X-G Huang, G-L Ma, and G. Wang Phys. Rev. C 94, 041901(R) (2016)

D. E. Kharzeev, J.F. Liao, Nature Rev.Phys. 3 (2021) 1, 55-63 S. Shi, H. Zhang, D. Hou, J.F. Liao, Phys. Rev. Lett. 125 (2020) 242301

Isobars idea:

- ✓ similar shape -> similar background,
- different Z -> different magnetic field -> change in CME signal

CME in isobar collisions

USTC 2024

TAR

Post-blind isobar results

- \succ isobar collisions differ in N, v₂, due to nuclear structure.
- > ratio higher than multiplicity scaling, lower than pair multiplicity scaling

Forced match method		Background baseline study			
	Re-weight events according to N, V_2 , EP resolution Mitigate isobar differences		Estimate nonflow backgrounds Set upper limit on CME fraction		

TAR

Results from the forced match method

YuFu Lin, QPT23

Tang, Chin. Phys. C 44, 054101 (2020)

USTC 2024

(e.g.

Isobar background baseline

Y. Feng QM23

STAR, arXiv:2308.16846

 $\Delta\gamma$ measurement using 3p correlation

$$C_{3,\alpha\beta} = \langle \cos(\phi_{\alpha} + \phi_{\beta} - 2\phi_c) \rangle, \quad \Delta\gamma = (C_{3,\text{os}} - C_{3,\text{ss}})/v_2^* = C_3/v_2^*$$

background decomposition [Feng et al., PRC105(2022)024913] :

$$\frac{\Delta\gamma_{\rm bkgd}}{v_2^*} = \frac{C_3}{v_2^{*2}} = C_{2p} \frac{v_2^2}{Nv_2^{*2}} + \frac{C_{3p}}{N^2 v_2^{*2}} = \frac{C_{2p} v_2^2}{Nv_2^{*2}} \left(1 + \frac{C_{3p}/C_{2p}}{Nv_2^2}\right)$$

• over the correlated pairs
$$C_{2p} = \langle \cos(\phi_{\alpha} + \phi_{\beta} - 2\phi_{2p}) \rangle_{2p}$$

• over the correlated triplets $C_{3p} = \langle \cos(\phi_{\alpha} + \phi_{\beta} - 2\phi_{c}) \rangle_{3p}$

$$Y_{\text{bkgd}} \equiv \frac{\left(\Delta \gamma_{\text{bkgd}} / v_2^*\right)^{\text{Ru}}}{\left(\Delta \gamma_{\text{bkgd}} / v_2^*\right)^{\text{Zr}}} \approx 1 + \frac{\delta(C_{2\text{p}}/N)}{C_{2\text{p}}/N} - \frac{\delta\epsilon_{\text{nf}}}{1 + \epsilon_{\text{nf}}} + \frac{1}{1 + \frac{Nv_2^2}{C_{3\text{p}}/C_{2\text{p}}}} \left(\frac{\delta C_{3\text{p}}}{C_{3\text{p}}} - \frac{\delta C_{2\text{p}}}{C_{2\text{p}}} - \frac{\delta N}{N} - \frac{\delta v_2^2}{v_2^2}\right)$$

$$\delta X = X^{\text{Ru}} - X^{\text{Zr}}$$

$$X \text{ w/o label is for Zr}$$
flow-induced background:
correlated pairs coupled with flow
(e.g., resonance decay ...)
• Resonance/cluster multiplicity
not strictly proportional to N
• 2D fit on (\Delta \eta, \Delta \phi) distribution
• 2D fit on (\Delta \eta, \Delta \phi) distribution

Isobar background baseline

Y. Feng QM23

STAR, arXiv:2308.16846

$$Y_{\rm bkgd} \equiv \frac{\left(\Delta \gamma_{\rm bkgd} / v_2^*\right)^{\rm Ru}}{\left(\Delta \gamma_{\rm bkgd} / v_2^*\right)^{\rm Zr}} \approx 1 + \frac{\delta(C_{\rm 2p} / N)}{C_{\rm 2p} / N} - \frac{\delta \epsilon_{\rm nf}}{1 + \epsilon_{\rm nf}} + \frac{1}{1 + \frac{N v_2^2}{C_{\rm 3p} / C_{\rm 2p}}} \left(\frac{\delta C_{\rm 3p}}{C_{\rm 3p}} - \frac{\delta C_{\rm 2p}}{C_{\rm 2p}} - \frac{\delta N}{N} - \frac{\delta v_2^2}{v_2^2}\right)$$

USTC 2024

Event-Shape-Engineering

USTC 2024

Backgrounds

Signal

Measured

Event-Shape-Engineering

Event-Shape-Selection

- > After v₂-BKG subtraction with Event Shape variables, and nonflow suppression with Ψ_1
- The data interpretation requires further assessment on the new ESS methodology
- ➢ More BES-II data analyses for 11.5 GeV and 9.2 GeV are on the way

Prof. Wang raise a question B-filed related background ?

γ -A scale with charge number Z² (Z, in-coherent) -> $|B|^2$ (|B|)

- 1. Multiplicity different due to γ -A interaction
- 2. Z charge (B) dependent $\Delta \gamma$ background from (γ -A -> ρ) decay, where the vector ρ is almost aligned with E (\perp B) as the photon is polarized (so, this background is similar as CME signal)

Multiplicity difference due to γ **-A interaction**

Multiplicity difference due to γ -A interaction in the rapid change region

 $ho^{\text{inc.}}$ (A-A) = $ho^{\text{coh.}}$ (A-A) * $ho^{\text{inc.}}$ (UPC)/ $ho^{\text{coh.}}$ (UPC)

 $\rho^{\text{coh.}}$ (A-A) = Jpsi^{coh.} (A-A)* $\rho^{\text{coh.}}$ (UPC)/ Jpsi^{coh.} (UPC)

	hardonic interaction (A-A)		UPC		
γ -Α -> ρ	coherent	In-coherent	coherent	In-coherent	
Exp.	No	No	Yes	Yes	
Model cal.	No	No	Yes	Yes	
γ-A -> J/psi	coherent	In-coherent	coherent	In-coherent	
Exp.	Yes	No	Yes	Yes	
Model cal.	Yes	No	Yes	Yes	

Rough estimation

STAR, Phys. Rev. Lett. 123 (2019) 132302, Phys. Rev. C 96, 054904 (2017)

> γ -A -> ρ in A-A hardonic interaction is not measured yet due to large combinatorial background (some hit of signal)

- \succ γ -A -> J/psi in A-A had some data and calculation
- > Use the $\rho/(J/psi)$ ratio in UPC for a rough estimation (590/0.29~2000)

 γ -A scale with charge number Z² (Z, in-coherent) -> |B|² (|B|) $\rho^{\text{coh.}}$ (Ru+Ru) = 0.025*(1+(44²-40²)/ (44²+40²)) = 2.74e-2 $\rho^{\text{inc.}}$ (Ru+Ru) = 0.075*(1+(44-40)/ (44+40)) = 7.85e-3 $\rho^{\text{coh.}}$ (Zr+Zr) = 0.025*(1-(44²-40²)/ (44²+40²)) = 2.26e-2 $\rho^{\text{inc.}}$ (Zr+Zr) = 0.075*(1-(44-40)/ (44+40)) = 7.14e-3

Rough estimation

 $ho^{\text{coh.}}$ (Isobar) = 0.05*96/197 = 0.025 $ho^{\text{inc.}}$ (Isobar) = 0.015*96/197 = 0.0075

 $\rho^{\text{inc.}}$ (Au+Au) = 0.05*(0.2+0.4)/2=0.015

 $\rho^{\text{coh.}}$ (Au+Au) = 2.5*10^{-5*} 2000 = 0.05

Rough estimation

TABLE I. Simulation inputs: primordial π^{\pm} rapidity densities $dN_{\pi^{\pm}}/dy$ (obtained from inclusive pion dN/dy minus resonance contributions, and assumed $\pi^{+} = \pi^{-}$), and p_T spectra $dN_{\pi^{\pm}}/dm_T^2 \propto (e^{m_T/T_{BE}} - 1)^{-1}$, where $m_T = \sqrt{p_T^2 + m_\pi^2}$ (m_π is the π^{\pm} rest mass); dN/dy ratios of resonances to inclusive pion ($\pi_{inc} \equiv \pi_{inc}^+ + \pi_{inc}^-$), assumed centrality independent, and ρp_T spectrum (obtained from fit to 200 GeV Au+Au data of the 40–80% centrality [19]) used for all resonances (ρ, η, ω) in all centralities; and $v_2/n = a/(1 + e^{-(lm_T - m_0)/n - b]/c}) - d$, where n = 2 is the number of constituent quarks (NCQ) and m_0 is the particle rest mass for π, ρ, η, ω , respectively. The T_{BE} and $\pi_{inc} dN/dy$ are from Bose-Einstein fit to the measured inclusive pion spectra [20,21], and the a, b, c, d parameters are from fit to the measured inclusive pion v_2 [22,23] by the NCQ-inspired function [24].

Centrality	$dN_{\pi^{\pm}}/dy$	T_{BE} (GeV)	а	b (GeV)	c (GeV)	d	Resonances ρ, η, ω
70-80%	7.8	0.171	0.118	0.180	0.155	0.024	
60–70%	16.7	0.179	0.140	0.116	0.173	0.046	dN/dy ratios:
50-60%	31.9	0.185	0.123	0.157	0.155	0.029	$2\rho/\pi_{\rm inc} = 0.169$ [19],
40-50%	53.9	0.190	0.136	0.145	0.175	0.039	$\eta/\rho = 0.47, \omega/\rho = 0.59 [25]$
30-40%	85.7	0.195	0.125	0.170	0.177	0.031	p_T spectra:
20-30%	129	0.198	0.125	0.147	0.210	0.039	$\frac{d^2 N_{\rm res}}{m_T dm_T dy} = \frac{d N_{\rm res}/dy}{T(m_0+T)} e^{-(m_T - m_0)/T}$
10-20%	186	0.219	0.096	0.155	0.212	0.030	T = 0.317 GeV [19]
0–10%	262	0.219	0.041	0.214	0.145	0.006	

Isobar (20-50%) $\rho^{\text{hardonic}} = 70*0.169*96/197 \sim 5$

```
\rho^{\rm coh.} (Isobar) = 0.025
```

 $\rho^{\text{inc.}}$ (Isobar) = 0.0075

 $N_{ch}(|\eta| < 1)$ shift by ~ 0.025*2*2=0.1 diff. by ~0.1*15%=0.015

 $ho^{\text{coh.}}$ (Isobar) = 0.025 $N_{ch}(|\eta| < 1)$ shift by ~ 0.025*2*2=0.1 diff. by ~0.1*15%=0.015

 γ -A scale with charge number Z² (Z, in-coherent) -> $|B|^2$ (|B|)

> The Chiral Magnetic Effect (CME) is extremely important in QCD ➤ The possible CME signal ~5-10% of the early measurements, with 1-3 σ significance, nonflow may be present. RHIC 2023-2025, ~x10 more Au+Au data

No signatures have been observed in the isobarProgresses on the ESE. Theoretical inputs