

Experimental search of CME at RHIC

Jie Zhao

Jan. 13, 2024

- Ø **Quark degree of freedom, χ-symmetry**
- Ø **QCD vacuum fluctuations,**

Topological gluon field, Qw≠0.

Ø **Local P, CP violations**

USTC 2024 *J. Zhao* 2

 $Q * 0$

d,

 u_{R}

 $\begin{pmatrix} d_R \end{pmatrix}$

3

How to measure CME?

S. A. Voloshin, Phys.Rev. C 70 (2004) 057901

The sign of Q_w can vary event to event and domain to domain \rightarrow one has to measure correlations

$$
\gamma = \left\langle \cos(\varphi_{\alpha} + \varphi_{\beta} - 2\psi_{RP}) \right\rangle
$$

φ represents the azimuthal angle α, β denote the charge of the particles, with combination of +-(-+), ++, -- $\Delta \gamma = \gamma^{+-} - \gamma^{++--} = 2 > 0$

 $\gamma^{+-} = \cos(\pi^{+} + \pi^{-} - 0) = \cos(360^{\circ}) = +1$

 $\gamma^{++} = \cos(\pi^+ + \pi^+ - 0) = \cos(180^\circ) = -1$

Early measurements

STAR collaboration, PRL 103(2009)251601; PRC 81(2010)54908; PRC 88 (2013) 64911

\triangleright Qualitatively consistent with CME expectations

S.A. Volosmin, PRC 70, 05791 (2004)
\nE. Wang, PRC 81, 064902 (2010)
\nA. Bzdak, V. Koch and J. Liao, PRC 83, 014905 (2011)
\nS. Schlichting and S. Pratt, PRC 83, 014913 (2011)
\nE. Wang, J. Zhao, PRC 95,051901(R) (2017)
\nE. Wang, J. Zhao, PRC 95,051901(R) (2017)
\nW_Q =
$$
\left\langle cos(\varphi_{\alpha} + \varphi_{\beta} - 2\psi_{RP})\right\rangle
$$

\n ψ_{RP}
\n $\$

 \triangleright Background from two-particle correlation coupled with v_2 \triangleright Remove background by selecting on $v_2=0$ (event shape)

TAR

B

Background issue, event-by-event v_2 can be indirected relationship in an appearance relationship in an appearance relationship in an appearance relationship in a set of the contract relationship in a set of the contract relationship in a set of the contract This suggests that the CME, which should give !⟨*A*²⟩ *>* !⟨*A*+*A*−⟩, cannot be entirely responsible for the present

between the charge separation and the average and the average anisotropy. The average and the average anisotropy. The average and the average

observations.
Extent of the contract of the STAR, PRC 89,044908 (2014) F. Wang, J. Zhao, PRC 95 (2017) 051901(R)

- Charge correlator linear as function of event-by-event v₂ (v₂^{obs} or v_{2 ebve}) **Ⅰ** $\frac{1}{2}$ condicted from the from $\frac{1}{2}$ tracks (left panel) and the first harmonic event plane reconstructed from $\frac{1}{2}$ \triangleright Charge correlator linear as function of event-by-event v_2 (v_2 ^{obs} or $v_{2,\text{ebye}}$)
- **▶** suggests large v₂ background contributions. Research and \vert
- \triangleright By selecting the events with v₂^{obs} = 0, the correlator is largely reduced, $\sqrt{2,\pi}$ but not totally eliminated, as background \thicksim v_{2,} $_{\rho}$ not v_{2, π}

Search for the CME

- Ø **Invariant mass method**
- Ø **Δγ with respect to ΨRP (ZDC) and ΨPP (TPC)**
- Ø **CME in isobar collisions**

Ø **Event-Shape-Engineering**

Invariant mass method

 \triangleright Identify the background by invariant mass of α + β pairs Explicit demonstration of "resonance" background

Isolate the CME from background

STAR, Phys. Rev. C 106 (2022) 034908

 $\underline{\Delta}\gamma(m) = r(m)^*\cos(\alpha+\beta-2\phi_{\text{reso.}})^*\underline{V}_{2,\text{reso.}}$ CME **Background shape Bkg. shape:** Δ γ_A – Δ γ_B (A,B select by q₂)

Fit $\Delta \gamma = k^*(\Delta \gamma_A - \Delta \gamma_B) + CME$

J. Zhao, H. Li, F. Wang, EPJC (2019) 79:168

CME signal fraction is $~15\%$ at 95% C.L.

USTC 2024 *J. Zhao J. Zhao* **9**

STAR Use Ψ_{PP} and Ψ_{RP} to solve Bkg and CME

H-J Xu, J. Zhao, X. Wang, H. Li, Z. Lin, C. Shen and F. Wang, CPC 42 (2018) 084103 H-J Xu, X. Wang, H. Li, J. Zhao, Z. Lin, C. Shen and F. Wang, PRL 121 (2018) 022301

B. Alver *et al.* (PHOBOS) , PRL **98**, 242302 (2007).

 \triangleright Δ_γ w.r.t. TPC Ψ_{FP} (proxy of Ψ_{PP}) and ZDC Ψ₁ (proxy of Ψ_{RP}) contain different fractions of CME and Bkg

Δ*γ* with respect to Ψ_{PP} and Ψ_{RP}

STAR collaboration, PRL. 128, 092301 (2022)

 \triangleright possible CME signal is 5-10% of the early measurements, with1-3 σ significance, may still have non-flow contributions

Expect 20B from 2023+25 runs, more precise conclusion

CME in isobar collisions

STAR , Phys. Rev. C 105 (2022) 14901

S. A. Voloshin, Phys.Rev. Lett. 105, 172301 (2010)

W-T Deng, X-G Huang, G-L Ma, and G. Wang Phys. Rev. C 94, 041901(R) (2016)

D. E. Kharzeev, J.F. Liao, Nature Rev.Phys. 3 (2021) 1, 55-63 S. Shi,H. Zhang, D. Hou, J.F. Liao, Phys. Rev. Lett. 125 (2020) 242301

Isobars idea:

- ü **similar shape -> similar background,**
- ü **different Z -> different magnetic field -> change in CME signal**

CME in isobar collisions

TAR

Post-blind isobar results

- \triangleright isobar collisions differ in N, v_2 , due to nuclear structure.
- \triangleright ratio higher than multiplicity scaling, lower than pair multiplicity scaling

TAR

Results from the forced match method STAR

YuFu Lin, QPT23

Tang, Chin. Phys. C 44, 054101 (2020)

USTC 2024 *J. Zhao* *15

 $(e.g.$

Isobar background baseline

Y. Feng QM23 STAR, arXiv:2308.16846

 $\Delta \gamma$ measurement using 3p correlation

$$
C_{3,\alpha\beta} = \langle \cos(\phi_{\alpha} + \phi_{\beta} - 2\phi_c) \rangle, \quad \Delta\gamma = (C_{3,\text{os}} - C_{3,\text{ss}})/v_2^* = C_3/v_2^*
$$

background decomposition [Feng et al., PRC105(2022)024913] : \blacktriangleright

$$
\frac{\Delta\gamma_\mathrm{bkgd}}{v_2^*} = \frac{C_3}{v_2^{*2}} = C_{2\mathrm{p}}\frac{v_2^2}{Nv_2^{*2}} + \frac{C_{3p}}{N^2v_2^{*2}} = \frac{C_{2\mathrm{p}}v_2^2}{Nv_2^{*2}}\left(1 + \frac{C_{3\mathrm{p}}/C_{2\mathrm{p}}}{Nv_2^2}\right)
$$

\n- over the correlated pairs
$$
C_{2p} = \langle \cos(\phi_{\alpha} + \phi_{\beta} - 2\phi_{2p}) \rangle_{2p}
$$
\n- over the correlated triplets $C_{3p} = \langle \cos(\phi_{\alpha} + \phi_{\beta} - 2\phi_{c}) \rangle_{3p}$
\n

$$
Y_{\text{bkgd}} \equiv \frac{(\Delta \gamma_{\text{bkgd}}/v_2^*)^{\text{Ru}}}{(\Delta \gamma_{\text{bkgd}}/v_2^*)^{\text{Zr}}} \approx 1 + \frac{\delta(C_{2p}/N)}{C_{2p}/N} - \frac{\delta \epsilon_{\text{nf}}}{1 + \epsilon_{\text{nf}}} + \frac{1}{1 + \frac{Nv_2^2}{C_{3p}/C_{2p}}} \left(\frac{\delta C_{3p}}{C_{3p}} - \frac{\delta C_{2p}}{C_{2p}} - \frac{\delta N}{N} - \frac{\delta v_2^2}{v_2^2}\right)
$$
\n
$$
\delta X = X^{\text{Ru}} - X^{\text{Zr}}
$$
\n
$$
\delta X = X^{\text{Ru}} - X^{\text{Zr}}
$$
\n
$$
\delta X = \frac{N}{N}
$$
\n<math display="block</math>

Isobar background baseline

Y. Feng QM23

STAR, arXiv:2308.16846

$$
Y_{\text{bkgd}} \equiv \frac{\left(\Delta\gamma_{\text{bkgd}}/v_2^*\right)^{\text{Ru}}}{\left(\Delta\gamma_{\text{bkgd}}/v_2^*\right)^{\text{Zr}}} \approx 1 + \frac{\delta(C_{2\text{p}}/N)}{C_{2\text{p}}/N} - \frac{\delta\epsilon_{\text{nf}}}{1+\epsilon_{\text{nf}}} + \frac{1}{1+\frac{Nv_2^2}{C_{3\text{p}}/C_{2\text{p}}}}\left(\frac{\delta C_{3\text{p}}}{C_{3\text{p}}}-\frac{\delta C_{2\text{p}}}{C_{2\text{p}}}-\frac{\delta N}{N}-\frac{\delta v_2^2}{v_2^2}\right)
$$

USTC 2024 *J. Zhao* *17

Event-Shape-Engineering

Backgrounds

Signal

Measured

Event-Shape-Engineering

Event-Shape-Selection

- After v_2 -BKG subtraction with Event Shape variables, and nonflow suppression with Ψ_1
- The data interpretation requires further assessment on the new ESS methodology
- \triangleright More BES-II data analyses for 11.5 GeV and 9.2 GeV are on the way

Prof. Wang raise a question B-filed related background ?

γ -A scale with charge number Z^2 (Z, in-coherent) -> $|B|^2$ ($|B|$)

- 1. Multiplicity different due to γ -A interaction
- 2. Z charge (B) dependent Δy background from (γ -A -> ρ) decay, where the vector ρ is almost aligned with E (\perp B) as the photon is polarized (so, this background is similar as CME signal)

Multiplicity difference due to γ **-A interaction STAR**

Multiplicity difference due to γ -A interaction in the rapid change region

 $\rho^{\text{inc.}}$ **(A-A) =** $\rho^{\text{coh.}}$ **(A-A)** * $\rho^{\text{inc.}}$ **(UPC)** $\rho^{\text{coh.}}$ **(UPC)**

 $\rho^{\text{coh.}}$ **(A-A)** = Jpsi^{coh.} **(A-A)*** $\rho^{\text{coh.}}$ **(UPC)** Jpsi^{coh.} **(UPC)**

Rough estimation

TA BLES centrality (%) TABLE I. Cross sections and median impact parameters b_m , for production of vector mesons. 70 60 dN/dy Mesor XnXn $1n1n$ overal Au+Au 200 GeV p_{T} < 0.1 GeV/c σ [mb] b_{\cdots} [fm] σ [mb] h . [fm] σ [mb] b_m [fm] U+U 193 GeV 0.15 fit fn = p_{n} ⁺UPC_p_x(x) + p₁/ $(1 + x^{2}/p_{n})^{2}$ Gold beams at RHIC (γ_{α}) 108 **Expectation of hadronic production** 10^{-4} 500 3.5 19 46 30 18 SS/SS 0.1 0.34 50 3.9 18 19 39 38 18 0.27 19 3.1 $10⁴$ 0.05 0.29 23 0.044 17 0.0036 18 **STAR** Lead beams at LHC (γ_c) -2940 5200 280 12 22 210 19 10^{4} - Nucleus+Nucleus 290 1.1 22 19 10 0.15 20 22 Nucleus+Spectator 460 220 19 1.1 $-$ SS $\frac{1}{2}$ SS $\frac{1}{2}$ 2.5 0.14 $\sqrt{21}$ J/ψ 32 68 19 0.1 ··· Spectator+Nucleus 10^{-7} Spectator+Spectator go.os TABLE VII. The coherent and incoherent cross sections for ρ^0 photoproduction within $|y| < 1$ with $X_n X_n$ 250 300 350 200 100 150 and $1n1n$ mutual excitation, and their ratios. N_{part} U Parameter $XnXn$ $ln 1n$ 0 6.49 ± 0.01 (stat.) ± 1.18 (syst.) mb 0.770 ± 0.004 (stat.) ± 0.140 (syst.) mb $\sigma_{\rm coh}$ 2.89 ± 0.02 (stat.) ± 0.54 (syst.) mb 0.162 ± 0.010 (stat.) ± 0.029 (syst.) mb σ_{incoh} 0.445 ± 0.015 (stat.) ± 0.005 (syst.) 0.233 ± 0.007 (stat.) ± 0.007 (syst.) $\sigma_{\rm incoh.}/\sigma_{\rm coh}$

• $N_{ch} \le 5$
80-100%

Isaac Upsal, DNP2022

STAR, Phys. Rev. Lett. 123 (2019) 132302, Phys. Rev. C 96, 054904 (2017)

 \triangleright y-A -> ρ in A-A hardonic interaction is not measured yet due to large combinatorial background (some hit of signal)

- γ -A -> J/psi in A-A had some data and calculation
- Use the ρ /(J/psi) ratio in UPC for a rough estimation (590/0.29~2000)

 γ -A scale with charge number Z^2 (Z, in-coherent) -> $|B|^2$ ($|B|$) $\rho^{\text{coh.}}$ (Ru+Ru) = 0.025*(1+(44²-40²)/ (44²+40²)) = 2.74e-2 $\[\rho^{\text{inc.}}\left(Ru+Ru\right) = 0.075*(1+(44-40)/(44+40))\] = 7.85e-3\]$ $\rho^{\text{coh.}}$ (Zr+Zr) = 0.025*(1-(44²-40²)/ (44²+40²)) = 2.26e-2 $\[\rho^{\text{inc.}}\left(Zr+Zr\right) = 0.075*(1-(44-40)/(44+40))\] = 7.14e-3\]$

Rough estimation

 $\rho^{\text{coh.}}$ (Isobar) = $0.05*96/197 = 0.025$ **inc. (Isobar) = 0.015*96/197 = 0.0075**

inc. (Au+Au) = 0.05*(0.2+0.4)/2=0.015

 $\rho^{\text{coh.}}$ (Au+Au) = 2.5*10^{-5*} 2000 = 0.05

Rough estimation

TABLE I. Simulation inputs: primordial π^{\pm} rapidity densities $dN_{\pi^{\pm}}/dy$ (obtained from inclusive pion dN/dy minus resonance contributions, and assumed $\pi^+ = \pi^-$), and p_T spectra $dN_{\pi^+}/dm_T^2 \propto (e^{m_T/T_{BE}} - 1)^{-1}$, where $m_T = \sqrt{p_T^2 + m_{\pi}^2}$ (m_{π} is the π^+ rest mass); dN/dy ratios of resonances to inclusive pion $(\pi_{inc} \equiv \pi_{inc}^+ + \pi_{inc}^-)$, assumed centrality independent, and ρ p_T spectrum (obtained from fit to 200 GeV Au+Au data of the 40–80% centrality [19]) used for all resonances (ρ, η, ω) in all centralities; and $v_2/n = a/(1 + e^{-[(m_T - m_0)/n - b]/c}) - d$, where $n = 2$ is the number of constituent quarks (NCQ) and m_0 is the particle rest mass for π, ρ, η, ω , respectively. The T_{BE} and $\pi_{inc} dN/dy$ are from Bose-Einstein fit to the measured inclusive pion spectra $[20,21]$, and the a,b,c,d parameters are from fit to the measured inclusive pion v_2 [22,23] by the NCQ-inspired function [24].

Isobar (20-50%) ρ hardonic = 70*0.169*96/197 ~ 5

```
\rho^{coh.} (Isobar) = 0.025
```
inc. (Isobar) = 0.0075

 $N_{ch}(|\eta|<1)$ shift by $\sim 0.025^*2^*2=0.1$ diff. by $\sim 0.1*15\% = 0.015$

 \triangleright ρ photo-production is 1/200 small than hardonic production, in 20-50% assume 5 times large v_2 for the ρ from photo-production, and only 1/3 background from ρ decay difference for the in-coherent is 44-40/(44+40)=9.5% difference for the coherent is 19% (average above \sim 15%) the isobar difference due to the γ -A -> ρ bkg. ~ 1/200*5/3*15% ~ 1/1000 using pair pT>0.1 could reduce the coherent contribution, \rightarrow ~1/4000

Isobar (20-50%) ρ hardonic = 70*0.169*96/197 ~ 5 $\rho^{\text{coh.}}$ (Isobar) = 0.025 **inc. (Isobar) = 0.0075** $N_{ch}(|\eta|<1)$ shift by $\sim 0.025^*2^*2=0.1$ diff. by $\sim 0.1*15\% = 0.015$

 γ -A scale with charge number Z^2 (Z, in-coherent) -> $|B|^2$ ($|B|$)

ØThe Chiral Magnetic Effect (CME) is extremely important in QCD \triangleright The possible CME signal ~5-10% of the early measurements, with 1-3σ significance, nonflow may be present. RHIC 2023-2025, ~x10 more Au+Au data

 \triangleright No signatures have been observed in the isobar **≻Progresses on the ESE. Theoretical inputs**