Light nuclei production via an analytical coalescence

model in relativistic heavy ion collisions

王瑞芹 曲阜师范大学

Collaborators: Feng-lan Shao, Jun Song, Yan-ting Feng, et al. References: Phys. Rev. C **109**, 034907, 2024; **105**, 054908, 2022; **103**, 064908, 2021.

2024.4.15 合肥

Outline

I. Introduction

II. Analytical coalescence model

the general formalism delta function approximation modeling the normalized nucleon coordinate distribution final formulas of momentum distributions of light nuclei

III. Applications at RHIC and LHC

 B_A in pp, p-Pb and Pb-Pb collisions at LHC p_T spectra, yield rapidity densities, yield ratios at RHIC and LHC extended applications in Au-Au collisions at 3 GeV

IV. Summary

I. Introduction

What can light nuclei in relativistic heavy-ion collisions tell us?

- composite particle production mechanism
- system freeze-out property

.

• QCD phase diagram structure

thermal models

$$N_{i} = V \int \frac{d^{3}p}{(2\pi)^{3}} \frac{g_{i}}{\exp[(\sqrt{p^{2} + m_{i}^{2}} - \mu_{i})/T_{ch}] \pm 1},$$

coalescence models

$$f_{LN} \sim f_p^Z f_n^{A-Z} \otimes \mathcal{R}_{LN}$$

dynamical transport models

 $\pi d \leftrightarrow \pi pn; \ \pi t \leftrightarrow \pi pnn; \ \pi^{3} \text{He} \leftrightarrow \pi ppn; \ Nd \leftrightarrow Npn; \ \cdots$

multi-fragmentation

break-up of highly excited spectators

- p_T spectra
- rapidity distributions
- yield ratios
- coalescence factors B₂ and B₃
- flows $v_{1,}v_{2}$ and v_{3}

collision energy dependence

system size dependence

 p_T dependence

STAR, PRL 130, 202301, 2023

LHC Experiment:

ALICE, PRC 107, 064904, 2023

7

How coalescence works for those RHIC & LHC measurements ?

Characteristics originated from coalescence itself ?

We develop an analytic description for the productions of different species of light nuclei in the coalescence picture --

- the analytical coalescence model.

How milk works for these delicious foods ?

II. Analytical coalescence model

quark-antiquark system

q = u, d, s, c, b $\overline{q} = \overline{u}, \overline{d}, \overline{s}, \overline{c}, \overline{b}$

Shandong Quark Combination Model

hadronic system

 $M(q\overline{q}), B(qqq), \overline{B}(\overline{qqq})$

 $d, t, {}^{3}\text{He}, {}^{3}_{\Lambda}\text{H}, {}^{4}\text{He}...$

$p + n \rightarrow d$

The deuteron momentum distribution

$$f_d(\vec{p}) = \int d\vec{x}_1 d\vec{x}_2 d\vec{p}_1 d\vec{p}_2 f_{pn}(\vec{x}_1, \vec{x}_2; \vec{p}_1, \vec{p}_2) \mathcal{R}_d(\vec{x}_1, \vec{x}_2; \vec{p}_1, \vec{p}_2, \vec{p})$$

two-nucleon joint coordinate momentum distribution

$$f_{pn}(\vec{x}_1, \vec{x}_2; \vec{p}_1, \vec{p}_2) = N_{pn} f_{pn}^{(n)}(\vec{x}_1, \vec{x}_2; \vec{p}_1, \vec{p}_2)$$

kernel function
$$\mathcal{R}_{d}(\vec{x}_{1},\vec{x}_{2};\vec{p}_{1},\vec{p}_{2},\vec{p}) = g_{d}\mathcal{R}_{d}^{(x,p)}(\vec{x}_{1},\vec{x}_{2};\vec{p}_{1},\vec{p}_{2})\delta(\sum_{i=1}^{2}\vec{p}_{i}-\vec{p})$$

$$\mathcal{R}_{d}^{(x,p)}(\vec{x}_{1},\vec{x}_{2};\vec{p}_{1},\vec{p}_{2}) = 8e^{-\frac{(\vec{x}_{1}'-\vec{x}_{2}')^{2}}{\sigma_{d}^{2}}}e^{-\frac{\sigma_{d}^{2}(\vec{p}_{1}'-\vec{p}_{2}')^{2}}{4\hbar^{2}c^{2}}}, \quad \sigma_{d} = \sqrt{\frac{8}{3}}R_{d}$$

The deuteron momentum distribution

$$f_d(\vec{p}) = g_d N_{pn} \int d\vec{x}_1 d\vec{x}_2 d\vec{p}_1 d\vec{p}_2 f_{pn}^{(n)}(\vec{x}_1, \vec{x}_2; \vec{p}_1, \vec{p}_2) 8e^{-\frac{(\vec{x}_1' - \vec{x}_2')^2}{\sigma_d^2}} e^{-\frac{\sigma_d^2(\vec{p}_1' - \vec{p}_2')^2}{4\hbar^2 c^2}} \delta(\sum_{i=1}^2 \vec{p}_i - \vec{p})$$

Assumption 1: delta function
approximation
$$e^{-\frac{\sigma_d^2(\vec{p}_1'-\vec{p}_2')^2}{4\hbar^2c^2}} \approx (\frac{2\hbar c\sqrt{\pi}}{\sigma_d})^3 \delta(\vec{p}_1'-\vec{p}_2')$$

We have
$$f_d(\vec{p}) = 8g_d N_{pn} (\frac{\hbar c \sqrt{\pi}}{\sigma_d})^3 \gamma \int d\vec{x}_1 d\vec{x}_2 f_{pn}^{(n)}(\vec{x}_1, \vec{x}_2; \frac{\vec{p}}{2}, \frac{\vec{p}}{2}) e^{-\frac{(\vec{x}_1 - \vec{x}_2)^2}{\sigma_d^2}}$$

Assumption 2:
$$f_{pn}^{(n)}(\vec{x}_1, \vec{x}_2; \frac{\vec{p}}{2}, \frac{\vec{p}}{2}) = f_{pn}^{(n)}(\vec{X}) f_{pn}^{(n)}(\vec{r}; \frac{\vec{p}}{2}, \frac{\vec{p}}{2})$$
 $\vec{X} = \frac{\vec{x}_1 + \vec{x}_2}{2}$
 $\vec{r} = \vec{x}_1 - \vec{x}_2$

The deuteron momentum distribution

$$f_{d}(\vec{p}) = 8g_{d}N_{pn}(\frac{\hbar c\sqrt{\pi}}{\sigma_{d}})^{3}\gamma\int d\vec{r}f_{pn}^{(n)}(\vec{r};\frac{\vec{p}}{2},\frac{\vec{p}}{2})e^{-\frac{(\vec{r}')^{2}}{\sigma_{d}^{2}}}$$

adopting $f_{pn}^{(n)}(\vec{r};\frac{\vec{p}}{2},\frac{\vec{p}}{2}) = \frac{1}{[\pi CR_{f}^{2}(\vec{p})]^{3/2}}e^{-\frac{\vec{r}^{2}}{CR_{f}^{2}(\vec{p})}}f_{pn}^{(n)}(\frac{\vec{p}}{2},\frac{\vec{p}}{2})$

We finally have

$$f_{d}(\vec{p}) = \frac{8g_{d}(\hbar c \sqrt{\pi})^{3} \gamma}{[CR_{f}^{2}(\vec{p}) + \sigma_{d}^{2}] \sqrt{C[R_{f}(\vec{p})/\gamma]^{2} + \sigma_{d}^{2}}} f_{pn}(\frac{\vec{p}}{2}, \frac{\vec{p}}{2})$$

$$f_d^{(\text{inv})}(p_T) = \frac{32(\hbar c \sqrt{\pi})^3 g_d}{m_d [CR_f^2(p_T) + \sigma_d^2] \sqrt{C[R_f(p_T)/\gamma]^2 + \sigma_d^2}} f_p^{(\text{inv})}(\frac{p_T}{2}) f_n^{(\text{inv})}(\frac{p_T}{2})$$

$p+n+n \rightarrow t$

Three dimensional momentum distribution

$$f_{t}(\vec{p}) = \frac{8^{2}(\hbar^{2}c^{2}\pi)^{3}g_{t}\gamma^{2}}{3\sqrt{3}[\frac{C}{2}R_{f}^{2}(\vec{p}) + \sigma_{t}^{2}]\sqrt{\frac{C}{2}[R_{f}(\vec{p})/\gamma]^{2} + \sigma_{t}^{2}[\frac{2C}{3}R_{f}^{2}(\vec{p}) + \sigma_{t}^{2}]\sqrt{\frac{2C}{3}[R_{f}(\vec{p})/\gamma]^{2} + \sigma_{t}^{2}}}f_{pnn}(\frac{\vec{p}}{3}, \frac{\vec{p}}{3}, \frac{\vec{p}}{3})$$

$$\begin{split} f_t^{(\text{inv})}(p_T) &= \frac{192\sqrt{3}(\hbar^2 c^2 \pi)^3 g_t}{m_t^2 [\frac{C}{2} R_f^2(p_T) + \sigma_t^2] \sqrt{\frac{C}{2} [R_f(p_T) / \gamma]^2 + \sigma_t^2} [\frac{2C}{3} R_f^2(p_T) + \sigma_t^2] \sqrt{\frac{2C}{3} [R_f(p_T) / \gamma]^2 + \sigma_t^2}} \\ &\times f_p^{(\text{inv})}(\frac{p_T}{3}) f_n^{(\text{inv})}(\frac{p_T}{3}) f_n^{(\text{inv})}(\frac{p_T}{3}) \end{split}$$

$p + p + n \rightarrow {}^{3}\text{He}$

Three dimensional momentum distribution

$$R_f(p_T) = a \times \left(\frac{dN_{ch}}{d\eta}\right)^{1/3} \times \left(\sqrt{p_T^2 + m_{d,t,^3\text{He}}^2}\right)^b \text{ model parameters: } a, b$$

• $B_A (B_2, B_3)$

independent of primordial nucleon momentum distributions

• **p**_T spectra, < **p**_T>, yield rapidity densities, ratios...

need primordial nucleon momentum distributions as inputs

B_A at p_T/A=0.7 GeV/c in pp, p-Pb, Pb-Pb collisions at LHC

RQW, F.L. Shao, J. Song, PRC 103, 064908, 2021

$\mathbf{B}_{\mathbf{A}}$ as function of $\mathbf{p}_{\mathbf{T}}$ /A in pp collisions at LHC

$\mathbf{B}_{\mathbf{A}}$ as function of $\mathbf{p}_{\mathbf{T}}$ /A in Pb-Pb collisions at LHC

RQW, Y.H. Li, J. Song, F.L. Shao, PRC 109, 034907, 2024

From results of **B**_A, we find:

- Analytical coalescence model can give obvious growth of B_A against p_T in Pb-Pb collisions but relatively weak p_T dependence in pp and p-Pb collisions.
- Coordinate-momentum correlation is necessary in large Pb-Pb collisions.

p_T spectra, < **p**_T>, yield rapidity densities, ratios

RQW, Y.H. Li, J. Song, F.L. Shao, Phys. Rev. C 109, 034907, 2024

p_T spectra of d, ³He, t

<pT> and dN/dy in Pb-Pb 2.76 TeV

TABLE I. Averaged transverse momenta $\langle p_T \rangle$ and yield rapidity densities dN/dy of d, ³He, and t in different centralities in Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV. Experimental data in the third and fifth columns are from Ref. [18]. Theoretical results are in the fourth and sixth columns.

		$\langle p_T \rangle$		dN/dy	
	Centrality	Data	Theory	Data	Theory
d	0-10%	$2.12 \pm 0.00 \pm 0.09$	2.19	$(9.82 \pm 0.04 \pm 1.58) \times 10^{-2}$	11.38×10^{-2}
	10-20%	$2.07 \pm 0.01 \pm 0.10$	2.12	$(7.60 \pm 0.04 \pm 1.25) \times 10^{-2}$	7.55×10^{-2}
	20-40%	$1.92 \pm 0.00 \pm 0.11$	1.95	$(4.76 \pm 0.02 \pm 0.82) \times 10^{-2}$	4.28×10^{-2}
	40-60%	$1.63 \pm 0.01 \pm 0.09$	1.62	$(1.90 \pm 0.01 \pm 0.41) \times 10^{-2}$	1.71×10^{-2}
	60-80%	$1.29 \pm 0.01 \pm 0.14$	1.28	$(0.51 \pm 0.01 \pm 0.14) \times 10^{-2}$	0.42×10^{-2}
³ He	0-20%	$2.83 \pm 0.05 \pm 0.45$	2.95	$(2.76 \pm 0.09 \pm 0.62) \times 10^{-4}$	2.60×10^{-4}
	20-80%	$2.65 \pm 0.06 \pm 0.45$	2.18	$(5.09 \pm 0.24 \pm 1.36) \times 10^{-5}$	5.14×10^{-5}
t	0-20%		2.97		2.77×10^{-4}
	20-80%		2.20		5.84×10^{-5}

Results at RHIC

26

đ d ī t Centrality $\sqrt{s_{NN}}$ data theory data theory data theory theory $\times 10^{-2}$ $\times 10^{-5}$ $\times 10^{-9}$ $\times 10^{-2}$ $\times 10^{-5}$ $\times 10^{-3}$ $\times 10^{-3}$ 7.7 GeV 0-10 % $140.99 \pm 0.41 \pm 10.97$ 142.52 2.43 21.64 22.06 1.48 _ 96.73 1.41 10-20 % $93.87 \pm 0.32 \pm 7.92$ 1.94 15.76 16.51 _ 51.86 7.30 9.23 1.33 20-40 % $49.06 \pm 0.16 \pm 5.38$ 1.46 _ 40-60 % 16.52 0.89 1.25 1.44 1.25 $15.48 \pm 0.09 \pm 2.92$ _ 60-80 % $3.13 \pm 0.05 \pm 0.91$ 3.28 0.22 0.36 _ $\times 10^{-2}$ $\times 10^{-4}$ $\times 10^{-8}$ $\times 10^{-2}$ $\times 10^{-4}$ $\times 10^{-3}$ $\times 10^{-3}$ 11.5 GeV 0-10 % $63.05 \pm 0.14 \pm 4.55$ 65.11 $3.29 \pm 0.63 \pm 1.10$ 3.21 5.83 6.07 6.50 10-20 % 42.46 $1.92 \pm 0.32 \pm 0.57$ 2.31 4.00 4.23 4.94 $41.02 \pm 0.11 \pm 3.39$ 2.34 20-40 % $21.92 \pm 0.06 \pm 2.23$ 22.32 $1.05 \pm 0.17 \pm 0.34$ 1.42 3.28 1.96 40-60 % $6.73 \pm 0.03 \pm 1.17$ 6.96 0.84 0.34 0.34 3.01 _ 60-80 % 1.38 0.29 1.48 $1.31 \pm 0.02 \pm 0.40$ _ $\times 10^{-2}$ $\times 10^{-2}$ $\times 10^{-4}$ $\times 10^{-4}$ $\times 10^{-4}$ $\times 10^{-4}$ $\times 10^{-7}$ 19.6 GeV $27.45 \pm 0.06 \pm 2.04$ 29.12 $17.88 \pm 0.52 \pm 3.14$ 8.33 0-10 % 20.45 15.70 16.43 6.92 10-20 % $18.78 \pm 0.05 \pm 1.57$ 20.09 15.38 10.20 11.98 $13.16 \pm 0.45 \pm 2.36$ 20-40 % $9.73 \pm 0.03 \pm 1.00$ 5.37 6.23 6.73 10.05 $10.33 \pm 0.27 \pm 1.87$ 11.44 40-60 % 0.90 0.95 6.10 $3.20 \pm 0.01 \pm 0.55$ 3.30 $5.48 \pm 0.20 \pm 1.15$ 6.65 60-80 % $0.68 \pm 0.007 \pm 0.21$ 0.67 $2.07 \pm 0.14 \pm 0.70$ 2.23 2.80 $\times 10^{-2}$ $\times 10^{-4}$ $\times 10^{-4}$ $\times 10^{-2}$ $\times 10^{-4}$ $\times 10^{-4}$ $\times 10^{-6}$ 27 GeV 0-10 % $18.44 \pm 0.04 \pm 1.28$ $41.35 \pm 0.54 \pm 4.63$ 19.57 44.34 7.98 8.35 2.5910-20 % $12.83 \pm 0.03 \pm 1.05$ 12.98 $32.35 \pm 0.47 \pm 3.85$ 35.17 5.07 5.71 2.35 2.09 20-40 % 7.05 $23.03 \pm 0.28 \pm 2.79$ 24.68 3.17 3.38 $6.84 \pm 0.01 \pm 0.70$ 40-60 % $2.33 \pm 0.009 \pm 0.43$ 2.45 $11.48 \pm 0.21 \pm 2.45$ 12.92 0.49 0.59 1.55 60-80 % $0.49 \pm 0.004 \pm 0.17$ 0.52 $3.33 \pm 0.11 \pm 1.23$ 3.87 0.60 $\times 10^{-2}$ $\times 10^{-2}$ $\times 10^{-4}$ $\times 10^{-4}$ $\times 10^{-4}$ $\times 10^{-4}$ $\times 10^{-6}$ 39 GeV 6.60 0-10 % $12.73 \pm 0.02 \pm 0.95$ 13.27 $79.96 \pm 0.46 \pm 6.35$ 85.57 4.21 4.59 10-20 % $8.78 \pm 0.01 \pm 0.69$ 9.20 $62.39 \pm 0.40 \pm 4.60$ 64.75 3.01 3.32 5.80 20-40 % $4.81 \pm 0.008 \pm 0.48$ 5.03 $41.24 \pm 0.23 \pm 4.11$ 42.81 1.681.92 4.46 40-60 % $1.72 \pm 0.004 \pm 0.30$ 1.82 $19.24 \pm 0.15 \pm 3.26$ 22.45 0.36 0.37 3.33 60-80 % $0.37 \pm 0.002 \pm 0.12$ 0.37 $5.50 \pm 0.09 \pm 1.80$ 6.77 1.33 $\times 10^{-4}$ $\times 10^{-2}$ $\times 10^{-2}$ $\times 10^{-2}$ $\times 10^{-2}$ $\times 10^{-4}$ $\times 10^{-5}$ 54.4 GeV 0-10% 10.28 9.58 1.21 1.26 1.22 2.672.47 10-20 % 7.07 7.15 0.93 0.93 2.36 2.14 0.94 20-40 % 3.89 3.67 0.57 0.59 1.29 1.16 0.69 40-60 % 1.40 1.27 0.28 0.28 0.25 0.21 0.39 60-80 % 0.31 0.28 0.07 0.08 0.13

TABLE II. Yield densities dN/dy of d, \bar{d} , t, and \bar{t} at midrapidity in Au-Au collisions in different centralities at $\sqrt{s_{NN}} =$ 7.7, 11.5, 19.6, 27, 39, 54.4 GeV. Data are from Refs. [43,45].

We find:

- Data for p_T spectra, averaged p_T , yield rapidity densities, yield ratios, especially for their interesting behaviors as functions of the collision energy and the collision centrality, can be well reproduced.
- Predictions of t/³He can further reveal production mechanisms of light nuclei.

• We developed an analytical coalescence model to deal with productions of different light nuclei in relativistic heavy-ion collisions.

◆ The relationships of light nuclei with primordial nucleons and effects of different factors (e.g., the whole hadronic system scale, the sizes of the formed light nuclei) on light nuclei production were clearly given.

♦ We applied the analytical coalescence model to heavy ion collisions at RHIC and LHC to successfully explain the experimental measurements.

◆ We found the coalescence mechanism worked well in describing light nuclei production in a wide collision energy range from 3 GeV to 5.02 TeV.

Au-Au collisions at $\sqrt{s_{NN}} = 3 \text{ GeV}$, consider other coalescence sources

$$p+n \rightarrow d;$$

$$p+n+n \rightarrow t, \quad n+d \rightarrow t;$$

$$p+p+n \rightarrow {}^{3}\text{He}, \quad p+d \rightarrow {}^{3}\text{He};$$

$$p+p+n+n \rightarrow {}^{4}\text{He}, \quad p+n+d \rightarrow {}^{4}\text{He}, \quad p+t \rightarrow {}^{4}\text{He},$$

$$n+{}^{3}\text{He} \rightarrow {}^{4}\text{He}, \quad d+d \rightarrow {}^{4}\text{He}$$

RQW, J.P. Lv, Y.H. Li, J. Song, F.L. Shao, Chin. Phys. C 48 053112 (2024).

Hyper triton, heavy flavor molecular states...

