

Collectivity in photon nuclear collisions from a multiphase transport model

Liang Zheng(郑亮)

China University of Geosciences (Wuhan)

The 2nd Workshop on Ultra-Peripheral Collision Physics: Strong Electromagnetic fields, UPC and EIC/EicC Hefei Anhui 2024/4/15

- Photon nuclear collisions
- Collectivity in photon nuclear collisions (UPC)
- AMPT with PYTHIA8 initial condition and subnucleon structures
- Flow in photon nuclear collisions with AMPT

High energy photon nuclear collisions

- Nuclear PDF
- Parton saturation
- Nuclear imaging
- In medium hadronization
- ...

Collectivity in photon nuclear collisions

UPC2024

PRC 104 (2021) 014903

Collectivity in photon nuclear collisions

- Longitudinal extension of color domains
- Uncorrelated domains randomly oriented
- Initial momentum anisotropy
- Roughly agree with experimental data
- v₂ increases with Q²

Collectivity in photon nuclear collisions

- Hydrodynamic simulation with comprehensive 3+1D framework
- v₂ hierarchy explained with longitudinal decorrelations
- VMD photon structure with sub-hadronic geometry

20<N <60,P(\/s

1.5

p_ [GeV/c]

b, 20<N, <60

+Pb.N >60

0.5

Due to photon size dependence, v_2 decreases with Q²

0.2

0.15

0.1

0.05

0

v₂(p_T)

2

ATLAS data

p+Pb, N >60

A multi-phase transport model (AMPT)

PRC 72 (2005) 064901 Nucl.Sci.Tech. 32 (2021) 113

- AMPT has been extensively applied in collectivity study for large systems
- System size dependence has been improved recently

AMPT x PYTHIA8

Sub-nucleon structure

Photon wave function and flux

Photon nuclear Glauber model with hot spots

Charged hadron production

Ph

$$\sqrt{s_{\gamma N}} = 894 \ GeV \
ho Pb$$
 collision
 $\sigma = 0.15 mb$, $t_{max} = 30 \ fm/c$

- Multiplicity can be quite large
- Asymmetric rapidity structure

 $1/N_{evt}dN_{ch}/d\eta$

Dihadron correlations

Elliptic flow coefficient

0.3<p_T<3 GeV/c, $| \triangle \eta | > 2$, $| \eta | < 2.4$ N_{ch} defined with $| \eta | < 2.4$, p_T>0.4 GeV/c

- Flow estimated with Q-cumulant method
- Low multiplicity subtract using N_{ch}<20 events
- Similar to the value seen in ATLAS data

- Integrated flow with non-flow subtraction N_{ch} dependence consistent with data
- High multiplicity events selected with (30,50), data for (20, 60)
- p_T differential flow with gap and nonflow subtraction using N_{ch} <20 events

Summary

- Collectivity in photon nuclear collisions has been stimulating for new theoretical and experimental developments in QGP studies.
- The AMPT model based on PYTHIA8/Angantyr initial conditions are expected to deal with different collisions systems.
- Sub-nucleon fluctuations for both proton and photon are considered in the same framework.
- Collectivity in UPC can be potentially explained in this model.
- A new framework to interpret the collectivity in UPC process and disentangle the its final state parton/hadron evolution effects.

Thank, jou!