LHC能区喷注物理最新进展及未来展望

https://www.int.washington.edu/node/776

毛亚显 (Yaxian MAO)

华中师范大学 (Central China Normal University)

- p+p: precision study of the perturbative and non-perturbative (NP) aspects of QCD in vacuum
 - What can we learn about perturbative interactions between q/g?
 - What can we learn about the NP effects (hadronization)?
 - What is the role of color charge and mass?
- A+A: use the interplay between jet and the medium to probe the properties of QGP
 - How does the medium modifies the jet?
 - What is the path-length dependence? What is the role of parton color charge and mass?
 - properties of QGP: medium size, transport coefficient, coherence length, quasi-particles?

Jet as object and probe

A (incomplete) roadmap of jet measurements

Yaxian MAO Central China Normal University

第二届超边缘碰撞物理研讨会,合肥, 2024年4月12-15日

Jet suppression and energy redistribution

- Jet and high p_T hadron suppression observed over extensive range
 - Interplay between high p_T and jet results
- New ML-based techniques allow for the extension to lower jet p_T and large R = 0.6

第二届超边缘碰撞物理研讨会,合肥, 2024年4月12-15日

R dependence of jet quenching

R dependence of jet R_{AA} can be sensitive to medium response effect and help to disentangle energy loss mechanisms

competing effect between the amount/how energy redistributed and ability to recover it

R dependence of jet quenching

R dependence of jet R_{AA} can be sensitive to medium response effect and help to disentangle energy loss mechanisms

competing effect between the amount/how energy redistributed and ability to recover it

R_{AA} - substructure interplay

- Large r_g jets are more suppressed
- At fixed jet p_T , large R-jet has higher probability to have large θ_g splitting

第二届超边缘碰撞物理研讨会,合肥,2024年4月12-15日

R_{AA} - substructure interplay

- Large r_g jets are more suppressed
- At fixed jet p_T , large R-jet has higher probability to have large θ_g splitting

\rightarrow important to study the r_g dependent R_{AA} with different R

第二届超边缘碰撞物理研讨会,合肥, 2024年4月12-15日

Jet substructure modifications

- Energy loss makes the jets narrower?
- selection bias
- q/g-fraction changes

響

Jet substructure modifications

- Energy loss makes the jets narrower?
- selection bias
- q/g-fraction changes

響欠

Yaxian MAO Central China Normal University $\rightarrow Z/\gamma$ -jet substructure can avoid selection bias and q/g fraction differences

Flavour/Color dependence of parton energy loss

Casimir color factors

Gluon-initiated showers are expected to have a broader and softer fragmentation profile than quarkinitiated showers

第二届超边缘碰撞物理研讨会,合肥,2024年4月12-15日

Flavour/Color dependence of parton energy loss

Flavor dependence involves: a) color charge differences; b) mass dependence (dominant at low p_T)

• Flavor dependence of energy loss: $E_{loss}^{gluon} > E_{loss}^{light-quark} > E_{loss}^c > E_{loss}^b$

Color charge dependence of energy loss

Н_{АА}

Flavor dependence of radiation:

 $> E_{\text{loss}}^{\text{light-quark}} > E_{\text{loss}}^c > E_{\text{loss}}^b$

Energy loss depends on color charge

Energy loss predicted to depend also on quark mass: reduction of gluon radiation from heavy quarks at small angles —"Dead Cone" effect

н АА

Flavor dependence of radiation:

small angles —"Dead Cone" effect

Yaxian MAO Central China Normal University

Energy loss depends on color charge

Energy loss predicted to depend also on quark mass: reduction of gluon radiation from heavy quarks at

Less suppression of b-jets than inclusive jets in most central collisions

第二届超边缘碰撞物理研讨会,合肥, 2024年4月12-15日

Mass dependence of energy loss is found between B and inclusive hadrons/ jets, but not charm and light flavors

First observation of dead-cone effect in pp

First observation of dead-cone effect in pp

Dead-cone effects for charm quark

Dead-cone effects for charm quark

Medium response to propagating parton

- Jet lose energy due to interaction with medium
 - medium modified by jets

Medium response to propagating parton

- energy loss as characterized by γ -jet asymmetry

Medium response to propagating parton

Semi-inclusive yield of jets recoiling from high-p_T hadron

- Measurements of semi-inclusive yield of jets recoiling from a high p_T hadron can push the kinematics down to very low p_T and large R
- access to low p_T jet quenching and intra-jet broadening

Semi-inclusive yield of jets recoiling from high-p_T hadron

- kinematics down to very low p_T and large R
- access to low p_T jet quenching and intra-jet broadening
- Increase of low p_T yields \rightarrow hints of energy recovery for very low p_T jets

Semi-inclusive yield of jets recoiling from high-p_T hadron

- kinematics down to very low p_T and large R
 - access to low p_T jet quenching and intra-jet broadening
- Increase of low p_T yields \rightarrow hints of energy recovery for very low p_T jets

第二届超边缘碰撞物理研讨会,合肥, 2024年4月12-15日

Medium response: redistribution of lost energy

第二届超边缘碰撞物理研讨会,合肥, 2024年4月12-15日

Recoil jet $\Delta \phi$ **modifications:** angular broadening

- Broadening of h-jet azimuthal correlations for soft jets
- Similar observation was also found by STAR for γ/π^0 triggered recoil jets
- Hybrid model w/ wake captures the yield enhancement at low p_T but not broadening

Baryon to meson enhancement around jets

- quenched jets can diffuse to large angle.

Hadron chemistry and charm quark fragmentation

- B/M ratio inside jet cone doesn't show a peak as inclusive case at intermediate p_T
- Charmed-jet fragmentation is slightly different when containing a strangeness quark hadrons
- Charm quarks have a softer fragmentation into Λ_c^+ baryons compared to D⁰ mesons

Jet physics at EIC: one example

- perturbative dynamics inside jet
- non-perturbative effects and hadronization within jets

N-point energy correlators can used to explore the transition between perturbative and non-

EIC will provide a cleaner environment and energy scale selection leading to discovery physics about

- Large number of jet results based on full Run 2 LHC data sample (many more not covered here)
 - More precision, extending to low $p_T/large R$, more differential, new analysis
- Understanding the transition from perturbative to non-perturbative QCD is crucial in order to interpret jet measurements
 - Understanding jet quenching effects in HI collisions
 - Test accuracy of high-order perturbative calculations
- Recent LHC jet measurements explore the expected breakdown of perturbative calculations in the non-perturbative regime
 - Provide guidance or future measurements \rightarrow ongoing LHC + sPHENIX&EIC !

Summary

Thanks for your attention! 感谢聆听!

First Pb-Pb collisions in Run 3!

