

Collective flow measurements in Au+Au collisions at $\sqrt{s_{NN}} = 3 - 19.6$ GeV

Shusu Shi

Central China Normal University

> Motivation

Elliptic Flow

> Degree of Freedom: Partonic or Hadronic

> Directed Flow

> Anti-flow of Mesons

Summary and Outlook

QCD Phase Diagram

 $\succ v_1$ is sensitive to the Equation-of-State (EoS) $\succ v_2$ is sensitive the degree of freedom: partonic vs. hadronic

S. A. Bass et al., Prog. Part. Nucl. Phys. 41, 255 (1998)

STAR Beam Energy Scan

Au+Au Collisions at RHIC

Collider Runs						Fixed-Target Runs					
	√S _{NN} (GeV)	#Events	μ_B	Уbeam	run		√ S_{NN} (GeV)	#Events	μ_B	Ybeam	run
1	200	380 M	25 MeV	5.3	Run-10, 19	1	13.7 (100)	50 M	280 MeV	-2.69	Run-21
2	62.4	46 M	75 MeV		Run-10	2	11.5 (70)	50 M	320 MeV	-2.51	Run-21
3	54.4	1200 M	85 MeV		Run-17	3	9.2 (44.5)	50 M	370 MeV	-2.28	Run-21
4	39	86 M	112 MeV		Run-10	4	7.7 (31.2)	260 M	420 MeV	-2.1	Run-18, 19, 20
5	27	585 M	156 MeV	3.36	Run-11, 18	5	7.2 (26.5)	470 M	440 MeV	-2.02	Run-18, 20
6	19.6	595 M	206 MeV	3.1	Run-11, 19	6	6.2 (19.5)	120 M	490 MeV	1.87	Run-20
7	17.3	256 M	230 MeV		Run-21	7	5.2 (13.5)	100 M	540 MeV	-1.68	Run-20
8	14.6	340 M	262 MeV		Run-14, 19	8	4.5 (9.8)	110 M	590 MeV	-1.52	Run-20
9	11.5	57 M	316 MeV		Run-10, 20	9	3.9 (7.3)	120 M	633 MeV	-1.37	Run-20
10	9.2	160 M	372 MeV		Run-10, 20	10	3.5 (5.75)	120 M	670 MeV	-1.2	Run-20
11	7.7	104 M	420 MeV		Run-21	11	3.2 (4.59)	200 M	699 MeV	-1.13	Run-19
						12	3.0 (3.85)	260 + 2000 M	760 MeV	-1.05	Run-18, 21

Most precise data to map the QCD phase diagram

 $3 < \sqrt{s_{NN}} < 200 \text{ GeV}; \quad 760 > \mu_B > 25 \text{ MeV}$

Particle Identification

- Good capability of particle identification (PID) based on TPC and TOF
- Decayed particles reconstructed by KF(Kalman Filter) particle package

A. Banerjee, I. Kisel and M. Zyzak, Int. J. Mod. Phys. A 35, 2043003 (2020)

STAR: Phys. Lett. B 827 (2022) 137003; Phys. Rev. C.107 (2023) 024912

- > At 3 GeV, the measured midrapidity v_2 for all particles are negative and NCQ scaling is absent
- Equation-of-State dominated by baryonic interactions
 - \rightarrow The hadronic degree of freedom dominates

NCQ Scaling of v₂ at 19.6 GeV

- ➤ The NCQ scaling holds within 20% for particles and within 10% for anti-particles
- The NCQ scaling of anti-particles is better than particles: produced vs. transported quarks → The collectivity has been built up in the partonic stage at 19.6 GeV

➤ The NCQ scaling holds within 15% for anti-particles and within 25% for particles → Partonic collectivity at 14.6 GeV

NCQ Scaling: 20 Years

> Anti-flow of K_s^0 is observed at 3.9 GeV ($p_T < 0.7$ GeV)

 $\succ v_1$ slope of π^+ and K_s^0 as a function of p_T measured for 10-40% centrality

- \succ The v_1 slope decreases as the collision energy increasing
- > Anti-flow of π^+ and K_s^0 are observed in low p_T region at 3.0 3.9 GeV

Anti-flow of Mesons

> JAM2 cascade mode and mean-field mode calculation of v_1 slope at 3.9 GeV

> Shadowing effect from spectator may lead to anti-flow at low p_T

Summary

- → Anti-flow of K_s^0 is observed at 3.0 3.9 GeV → Shadowing effect by spectators
- \blacktriangleright NCQ Scaling holds at 14.6 GeV and above \rightarrow Partonic interaction dominates
- \blacktriangleright NCQ Scaling breaks at 3.2 GeV and below \rightarrow Hadronic interaction dominates

- ➢ Higher statistics, better detector performance and more energy points in BES-II
- Explore the QCD phase diagram

Stay tuned for more new results!

- \succ TPC 2nd order event plane
 - \succ EP resolution (R₂₂) is calculated by two sub-event method
- ➤ The 1st order event plane from east side EPD at 3 GeV
 - > The 1st order EP resolution (R_{11}) is calculated by three sub-event method
 - \succ R₁₂ is for v₂ measurement

RHIC Top Energy

<

Energy Dependence of v₂

- Squeeze-out effect from spectator result in sign change of v₂
- ➢ JAM2 calculations of mean-field with spectator reproduce sign change of v₂

第二届超边缘碰撞物理研讨会, Apr. 12-15, 2024

 p_{x}

Out-of-Plane expansion

 p_{x}

In-Plane expansion