

LHCb实验小系统碰撞中重味测量新进展

2024.4.14

第二届超边缘碰撞物理研讨会 合肥,2024年4月12-15日

The LHCb detector

A single arm **general purpose detector** at **forward** rapidity !

- Full PID reconstruct resonances to $p_{\rm T} = 0$
- Precise tracking system clear separation between primary and displaced vertices
- Fast DAQ and detectors precision access to rare probes: charm/bottom, higher quarkonia, exotic states
- Fixed-target system (SMOG) explore p+gas and Pb+gas collisions (He, Ne, Ar gas)

JINST 3 (2008) S08005 IJMPA 30 (2015) 1530022 JINST 9 (2014) P12005

acceptance $2 < \eta < 5$

LHCb heavy ion datasets from Run1/Run2

*p*Pb data-taking modes:

3

Mapping the initial state with LHCb

Unique coverage of low-x (pPb), medium-x (Pbp) and large-x (p+gas) regions

Constraining nPDFs with D^0 meson in pPb

• LHCb measurement of prompt D^0 production in *p*Pb collisions at 5TeV makes a stringent constraint on reducing nPDFs uncertainty down to $x \sim 10^{-6}$

Prompt D_s^+ and D^+ in *p*Pb at 5.02 TeV

- First measurement of prompt D_s^+ and D^+ mesons in forward rapidity in heavy ion collisions
- Forward:
 - significant suppression consistent with nPDFs/CGC
 - consistent between D^0 , D_s^+ and D^+

- Backward:
 - consistent with nPDFs
 - *D*⁺ slightly lower

清华,罗毅恒

Prompt D^0 in *p*Pb at 8.16 TeV

- 20 times statistics of 5.02 TeV, the most precise charm measurement in heavy ion
- Forward:
 - Suppression consistent with 5.02 TeV result
 - Consistent with nPDFs and CGC

- Backward:
 - Data lower than nPDFs at high $p_{\rm T}$
 - Room for additional effects in the backward rapidity

Prompt D^0 in pPb at 8.16 TeV

- Lower than binary scaling at high p_T for a backward rapidity range where antishadowing effect starts to dominate Phys. Rev. Lett. 131 (2023) 102301
 - Modification of charm hadronization? or other final state effect?

Prompt D_s^+ and D^+ in *p*Pb at 8.16 TeV

- Measured with the same Run2 dataset
 - Forward: consistent with nPDFs/CGC
 - ➤ Backward:

both lower than nPDFs at high $p_{\rm T}$

Charm energy loss in (nuclear/parton-) medium before hadronization ?

Need to measure charmed hadrons flow versus rapidity !

Charmonium in UPC PbPb collisions

- Most precise coherent J/ψ measurement in forward rapidity at LHC
- First $\psi(2S)$ production measurement in forward rapidity at LHC
- *p*_T spectra determined for the first time in UPC PbPb
- Set unprecedented constrains to saturation models

Prompt Λ_c^+/D^0 ratio in pPb at 5.02 TeV

- Charm hadronization mechanism (coalescence versus fragmentation) probed with charm hadron ratios
- LHCb measured Λ_c^+/D^0 in pPb at forward/backward rapidities
- Forward/backward data consistent, but lower than mid-y ALICE data

Prompt Λ_c^+/D^0 ratio in PbPb at 5.02 TeV

- First measurement of prompt Λ_c^+/D^0 in forward rapidity in PbPb collisions (up to 60% centrality)
- PYTHIA8 + Color Reconnection: compatible with data within 3σ
- Statistical Hadronization Model is above the data
- No centrality dependence and consistent with LHCb pPb data

Prompt Ξ_c^+ **production** in *p*Pb at 8.16 TeV

LHCb THCp

- First measurement of prompt Ξ_c^+ in heavy ion collisions
- Ξ_c^+/Λ_c^+ ratio constant over p_T , consistent between forward and backward
- Ξ_c^+/D^0 ratio generally lower than ALICE pp data at mid-y, but uncertainty is large

Phys. Rev. C 109 (2024) 044901 INFN, 孙佳音

D_s^+/D^+ ratio in pPb at 5.02 and 8.16 TeV

- \blacktriangleright No or minor $p_{\rm T}$ dependence
- Consistent with LHCb pp measurements within uncertainties
- Consistent with ALICE measurements (at mid-rapidity) with higher precision
- \blacktriangleright Consistent with theoretical calculations in forward rapidity at 8.16 TeV.
- Slightly higher at backward rapidity than at forward, multiplicity dependence?

JHEP 01 (2024) 070 arXiv:2311.08490 罗毅恒, 辜晨曦 清华, **INFN**,孙佳音

D_s^+/D^+ ratio vs multiplicity in *p*Pb at 8.16 TeV

N^{PV} NTracks Number of tracks

Number of tracks used in primary vertex reconstruction

> The ratio increases with multiplicity significantly!

- > The enhancement is more pronounced at backward rapidity and lower p_{T} .
- ➤ Modification of charm hadronization/production in high-multiplicity pPb collisions.

孙佳音

arXiv:2311.08490

submitted to PRL

清华,辜晨曦

INFN,

$\psi(2S)$ to J/ ψ ratio vs multiplicity in *pp* at 13 TeV

- QGP droplet produced in high multiplicity *pp* collisions (small system) ?
- Search for sequential charmonia suppression in small system !
- Decreasing trend vs multipliticity observed for prompt contributions (in particular for low $p_{\rm T}$), consistent with comover interactions
- Independent on multiplicity and $p_{\rm T}$ for non-prompt contributions

$\psi(2S)$ to J/ ψ ratio in *p*Pb at 8.16 TeV

- New $\psi(2S)$ precise result with 20 times larger dataset than Run1 (5.02 TeV)
- Nonprompt: compatible with unity
- Prompt: additional suppression of $\psi(2S)$, compatible with comover break-up model

LHCb Upgrade-I installed

LHCb THCp

- Major upgrade:
 - Replacement of full tracking and RICH1/2 detectors
 - Completely new readout electronics
 - ➢ New DAQ & online system at 40 MHz
- New tracking system allows reconstruction up to $\sim 30\%$ most central PbPb collisions

First data from PbPb + PbAr collisions in 2022!

arXiv:2305.10515

Fixed target upgrade – SMOG2

- Dedicated gas storage cell installed
- Greatly increased rates of beam+gas collisions
- Concurrent running with pp collisions
- New gases: H₂, D₂, O₂ and large nuclei (Kr, Xe)
- Energies: $\sqrt{s_{
 m NN}} \in [68.5, 110]\,{
 m GeV}$

Candidates/($6.8 \text{ MeV}/c^2$) 6000 LHCb preliminary 2022 5000 $\sqrt{s_{\rm NN}}$ =113 GeV *p* Ar 4000 $N_{p^0} = 4200 \pm 180$ 3000 Data 2000 $D^0 \rightarrow K^- \pi^+$ 1000 ·····Background 1850 1900 1950 1800 $M(K^{-}\pi^{+})$ [MeV/ c^{2}]

Reconstructed from **18 minutes** of early 2022 data!

LHCb-FIGURE-2023-008

Summary

- LHCb has a very diverse heavy-ion and fixed target program, which profits of the variety of datasets
- LHCb detector capabilities provide unique access to rare probes of nuclear matter
 - Unprecedented access to low-x region of nuclei with various probes
 - Precise open/hidden charm and bottom measurements in small systems
 - Unique access to higher charmonia and exotics at low p_T
- LHCb heavy-ion program is rapidly expanding with new capabilities
 - Vigorous upgrades that directly impact LHCb heavy ion physics is underway

backup

b hadronization in pp at 13 TeV

- Baryon-to-meson ratio measured down to zero p_T with $\Lambda_b^0 \to J/\psi p K$ and $B^0 \to J/\psi \pi K$
- $p_{\rm T}$ trend compatible with measurement with semileptonic channel and pPb
- A strong baryon enhancement with multiplicity is observed
- Ratio recovers e^+e^- value (QCD-vacuum) at low multiplicity
- Ratio consistent with e^+e^- at high p_T

Phys. Rev. Lett. 132 (2024) 081901

χ_c production in *p*Pb at 8.16 TeV

- First measurement at LHC of $\chi_{c1} + \chi_{c2} \rightarrow J/\psi\gamma$ feeddown to J/ψ in *p*Pb
- Data compatible with feeddown from pp at 7 TeV
- No indication of comover break-up for χ_c

Phys. Rev. Lett. 132 (2024) 102302

J/ψ to D^0 ratio in fixed-target collisions

- Study PbNe sample at $\sqrt{s_{NN}} = 68.5$ GeV, negligible charm recombination, cleaner to search for "anomalous" suppression
- Use open charm as baseline
- Continuous suppression observed, compatible with no QGP scenario
- Larger system size (PbAr) and precision reachable in Run 3

PbNe: Eur. Phys. J. C83 (2023) 658, *p*Ne: Eur. Phys. J. C83 (2023) 625, Eur. Phys. J. C83 (2023) 541

Modification of X(3872) in *p*Pb

• LHCb can uniquely reconstruct exotic hadrons at low p_T

LHCb-PAPER-2023-026, in preparation

• Exotic multiquark states can give new constraints on hadronization models

