The 2nd Workshop on Ultra-Peripheral Collision Physics

Strong Electromagnetic Fields in Heavy ion Collisions

Xu-Guang Huang Fudan University, Shanghai

April 13, 2024 @ USTC, Hefei

Content

• Introduction

• Strong electromagnetic (EM) fields in matter

• Strong EM fields in vacuum (i.e., in UPC)

• Summary

Introduction

Magnetic fields in HICs

Smallness (fm level) + relativistic enhancement = very strong B field

$$eB \sim \gamma \alpha_{\rm EM} \frac{Z}{b^2} \sim 10^{18} \, {\rm G}$$

(RHIC Au+Au 200 GeV, b=10 fm)

Electric fields in HICs

Nucleon distribution fluctuations or asymmetric collisions (e.g., Cu + Au) or Faraday induction by B-field decay or = very strong E fields (comparable to B fields)

EM effects in heavy-ion collisions

- EM effects in matter (off-central collisions)
 - Chiral magnetic/separation effect
 - Chiral electric separation effect
 - (Inverse) Magnetic catalysis of chiral symmetry breaking
 - Anisotropic pressure and viscosities
 - de Haas van Alphen effect
 - Einstein de Haas effect
 -
- EM effects in vacuum (UPCs)
 - Schwinger pair production
 - Vacuum birefringence
 - Breit Wheeler process
 - Photon scattering
 - Vacuum instability
 -

EM effects in heavy-ion collisions

- EM effects in matter (off-central collisions)
 - Chiral magnetic/separation effect
 - Chiral electric separation effect
 - (Inverse) Magnetic catalysis of chiral symmetry breaking
 - Anisotropic pressure and viscosities
 - de Haas van Alphen effect
 - Einstein de Haas effect
 -
- EM effects in vacuum (UPCs)
 - Schwinger pair production
 - Vacuum birefringence
 - Breit Wheeler process
 - Photon scattering
 - Vacuum instability

•

EM fields + matter coupled evolution and distribution?

Non-perturbative strong-field physics?

EM fields in matter: 1. Anisotropic viscosities

Strong indication of EM fields in HICs

• v1 splitting of charged light flavors measurement by STAR (STAR 2023)

• v2 splitting of charged light flavors measurement by STAR and ALICE (STAR 2022, ALICE 2023)

9

Strong-field magnetohydrodynamics

- Though there may be non-hydro contribution, MHD may provide a benchmark for understanding v1, v2 splitting of light flavors
- What are special for strong-field MHD? Anisotropic pressure and viscosities

Strong-field magnetohydrodynamics

- Though there may be non-hydro contribution, MHD may provide a benchmark for understanding v1, v2 splitting of light flavors
- What are special for strong-field MHD? Anisotropic pressure and viscosities

(XGH, Sedrakian, Rischke 2011; Hernandez, Kovtun 2017; Grozdanov, Hofman, Iqbal 2017; Hattori-Hongo-XGH 2022)

 $1/T \ll \text{Larmor} \text{ radius } R_T = T/eB \leq \lambda_{\text{mfp}}$

Strong-field magnetohydrodynamics

- Though there may be non-hydro contribution, MHD may provide a benchmark for understanding v1, v2 splitting of light flavors
- What are special for strong-field MHD? Anisotropic pressure and viscosities

Measure anisotropic viscosities?

EM fields in matter: 2. Time-varying fields

Spacetime dependence of EM fields

• The EM fields are inhomogeneous

(Deng, XGH 2012; and many others)

• The EM fields are rapidly decaying if the matter is insulating

Well fitted by

$$\langle eB_y(t)\rangle \approx \frac{\langle eB_y(0)\rangle}{(1+t^2/t_B^2)^{3/2}}$$

Life time of B field

$$t_B \approx R_A / (\gamma v_z) \approx \frac{2m_{\rm N}}{\sqrt{s}} R_A$$

<u>Realistic evolution of B fields</u>

• If the matter is conducting

Solve coupled kinetic equation of partons and Maxwell equations: •

15

Realistic evolution of B field

B field

•

- Similar results from BAMPS with binary collisions (Wang, Zhao, Greiner, Xu, Zhuang 2021)
- Electric current: incomplete Ohm's law

"The relaxation time is larger than the lifetime of the external magnetic field for the QCD matter in relativistic heavy-ion collisions"

"Our results show a strong suppression by two orders of magnitude in the magnetic field, relatively to calculations assuming the validity of Ohm's law."

Realistic evolution of B field

- Similar results from USTC group (Zhang-Sheng-Pu-Wang etal 2022)
- B fields:

• Effective conductivity

Note that the effective conductivity can be negative

CME under time-varying B field

• All these simulations show strong time-dependence of B field, and thus indicating incomplete chiral magnetic response

$$\boldsymbol{J}_V(t) \neq \frac{e^2 \mu_A}{2\pi^2} \boldsymbol{B}(t)$$

• In momentum space (Son-Yamamoto 2012; Satow 2014)

$$\begin{aligned} J_V^i(\omega, \boldsymbol{k}) &= G_R^{ij,-}(\omega, \boldsymbol{k}) A^j(\omega, \boldsymbol{k}) \\ G_R^{ij,-} &= i e^2 \frac{\mu}{4\pi^2} \epsilon^{ijk} k^k - e^2 \frac{\mu\omega}{4\pi^2} \int \frac{d\Omega_{\hat{\mathbf{p}}}}{(4\pi)} \frac{\epsilon^{ilk} \hat{p}^j - \epsilon^{jlk} \hat{p}^i}{-i\omega + i\hat{\mathbf{p}} \cdot \mathbf{k} + \tau^{-1}} \hat{p}^l k^k \end{aligned}$$

• This could modify the chiral anomalous hydrodynamics, e.g., AVFD (Shi, Jiang, Liao 2018)

Provide a more reliable theoretical basis for understanding CME-sensitive observables?

EM fields in vacuum: UPC

• Two typical processes in UPC

(ATLAS 2016)

Photon-photon scattering

• Why perturbative treatment is sufficient even when $eE/m^2 \gg 1$?

• Two typical processes in UPC

Breit-Wheeler process

(ATLAS 2016)

Photon-photon scattering

• Why perturbative treatment is sufficient even when $eE/m^2 \gg 1$?

• For time varying fields, not only the Schwinger parameter $\theta = eF/m^2$ but also $\gamma = m/(eF t_B)$ and $\nu = eFt_B^2$ important

$$t_B \approx R_A / (\gamma v_z) \approx \frac{2m_N}{\sqrt{s}} R_A$$
 Non-perturbativeness $\sqrt{s} \le \alpha_{\rm EM} \frac{2Zm_N}{b^2} R_A^2 \sim O({\rm GeV})$

•

Lower-energy UPC makes non-perturbativeness more favored

• Schwinger pair production

$$N_{e^{\pm}} = \frac{(eE)^2 VT}{(2\pi)^3} \times \exp\left[-\pi \frac{m^2}{eE}\right]$$

• Is UPC (or non-UPC) at lower and lower energies good place for Schwinger pair?

Summary

<u>Summary</u>

- Strong EM fields in HICs
- Can charge-dependent v1, v2, v3 be used to extract anisotropic viscosities?
- Time-varying EM fields lead to new contribution to CME, CMW, etc?
- Low-energy UPC to detect non-perturbative QED phenomena?

