

Quantum Computing in High Energy Nuclear Physics Xingyu Guo (QUNU Collaboration) South China Normal University

Phys.Rev.D 105 (2022) 11, L11150 Sci. China Phys. Mech. Astron. 66(2023) 8, 281011 arXiv:2301.04179 **1st USTC-PNP-NP MiniWorkshop**

Contents

- Introduction
- Lattice NJL model in Hamiltonian formalism
- Quantum circuit for correlation functions
- Numerical results
- Summary

Quantum Computing

- Computing with quantum bits ("qubits")
 - Hardware: How to build a quantum computer
 - Algorithm: How to "run" a quantum computer
- Exponential acceleration: quantum supremacy

Quantum Computing

- Computing with quantum bits ("qubits")
 - Hardware: How to build a quantum computer
 - Algorithm: How to "run" a quantum computer
- Exponential acceleration: quantum supremacy

"... and if you want to make a simulation of nature, you'd better make it quantum mechanical, ..."

-Feynman

Simulating Physics with Computers

Richard P. Feynman

Department of Physics, California Institute of Technology, Pasadena, California 91107

Received May 7, 1981

1. INTRODUCTION

On the program it says this is a keynote speech—and I don't know what a keynote speech is. I do not intend in any way to suggest what should be in this meeting as a keynote of the subjects or anything like that. I have my own things to say and to talk about and there's no implication that anybody needs to talk about the same thing or anything like it. So what I want to talk about is what Mike Dertouzos suggested that nobody would talk about. I want to talk about the problem of simulating physics with computers and I mean that in a specific way which I am going to explain. The reason for doing this is something that I learned about from Ed Fredkin, and my entire interest in the subject has been inspired by him. It has to do with learning something about the possibilities of computers, and also something about possibilities in physics. If we suppose that we know all the physical laws perfectly, of course we don't have to pay any attention to computers. It's interesting anyway to entertain oneself with the idea that we've got something to learn about physical laws; and if I take a relaxed view here (after all I'm here and not at home) I'll admit that we don't understand everything.

OC in High Energy Physics

- Parton structure
 - H. Lamm, S. Lawrence, Y. Yamauchi, Phys. Rev. Res. 2(2020), 013272
 - N. Mueller, A. Tarasov, R. Venugopalan, Phys. Rev. D 102(2020), 016007
- Jet production / fragmentation
 - A. Florio et al., arXiv:2301.11991
- Phase transition
 - A. M. Czajka, Z.-B. Kang, Y. Tee, F. Zhao, arXiv:2210.03062
 - A. Thompson, G. Siopsis, arXiv:2303.02425
 - K. Ikeda, D. E. Kharzeev, R. Meyer, S. Shi, arXiv:2305.00996
- Simulation of gauge theory
 - Z. Davoudi, A. F. Shaw, J. R. Stryker, arXiv:2212.14030
 - R. C. Farrell et al., Phys. Rev. D 107(2023), 054513
- And many more!

Quantum Computing in Physics

- Challenges
 - Space complexity
 - Limited number of qubits
 - Classical simulations: exponentially difficult
 - Time complexity
 - Noises
 - Gauge field
 - Analog simulation
 - Digital simulation

Quantum Computing in Physics

- Challenges
 - Space complexity
 - Limited number of qubits
 - Classical simulations: exponentially difficult
 - Time complexity
 - Noises
 - Gauge field

...

- Analog simulation
- Digital simulation

1+1D NJL Model

Lagrangian:

- Discretization: staggered fermion \bullet
- Hamiltonian:

$$H = \sum_{\alpha,n} \left[-\frac{i}{2a} (\phi_{\alpha,n}^{\dagger} \phi_{\alpha}) -g \sum_{\alpha,n=even} \left[\phi_{\alpha,n}^{\dagger} \phi_{\alpha} \right] \right]$$

 $\mathscr{L} = \bar{\psi}_{\alpha} (i\gamma^{\mu}\partial_{\mu} - m_{\alpha})\psi_{\alpha} + g(\bar{\psi}_{\alpha}\psi_{\alpha})^{2}$ $\psi_{\alpha}(x) = \begin{pmatrix} \psi_{\alpha,1}(x) \\ \psi_{\alpha,2}(x) \end{pmatrix} \equiv \begin{pmatrix} \phi_{\alpha,2n} \\ \phi_{\alpha,2n+1} \end{pmatrix}$

 $_{\alpha,n+1} - h \cdot c) + (-1)^n m_\alpha \phi_{\alpha,n}^{\dagger} \phi_{\alpha,n}^{\dagger}$

 $\phi_{\alpha,n} + \phi_{\alpha,n+1}^{\dagger} \phi_{\alpha,n+1} - 2\phi_{\alpha,n}^{\dagger} \phi_{\alpha,n} \phi_{\alpha,n+1}^{\dagger} \phi_{\alpha,n+1}]$

Parton Distribution Function

- Non-perturbative
- Light-cone: not equal-time
- Proton, Neutron, Pion, Nuclear, ...
- Study method:
 - Global fitting
 - Lattice QCD calculation: quasi-PDF, pseudo-PDF

Definition:

$$f_{q/h} = \int \frac{dz}{4\pi} e^{-ixM_h z}$$

- where $\gamma^+ = \gamma^0 + \gamma^1$.
- Relevant dimension: 1+1 D
- Prepare the hadronic state
- Calculate the (dynamical) correlation function

$\langle h | \bar{\psi}(z, -z) \gamma^+ \psi(0,0) | h \rangle$

$= \left[\frac{dz}{4\pi} e^{-ixM_h z} \langle h | e^{iHz} \overline{\psi}(0, -z) e^{-iHz} \gamma^+ \psi(0, 0) | h \rangle \right]$

Definition:

- where $\gamma^+ = \gamma^0 + \gamma^1$.
- Relevant dimension: 1+1 D
- Prepare the hadronic state
- Calculate the (dynamical) correlation function

 $= \left[\frac{dz}{4\pi}e^{-ixM_h z}(h)e^{iHz}\overline{\psi}(0,-z)e^{-iHz}\gamma^+\psi(0,0)h\right]$

Definition:

- where $\gamma^+ = \gamma^0 + \gamma^1$.
- Relevant dimension: 1+1 D
- Prepare the hadronic state
- Calculate the (dynamical) correlation function

 $= \int \frac{dz}{4\pi} e^{-ixM_h z} \left(h\right) e^{iHz} \overline{\psi}(0, -z) e^{-iHz} \gamma^+ \psi(0, 0) h\right)$

Definition:

- $= \int \frac{dz}{4\pi} e^{-ixM_h z}$
- where $\gamma^+ = \gamma^0 + \gamma^1$.
- Relevant dimension: 1+1 D
- Prepare the hadronic state
- Calculate the (dynamical) correlation

$(h)e^{iHz}\bar{\psi}(0,-z)e^{-t}$	$-iHz\gamma^+\psi(0,0)$ h
How to do	
function	this on a quantum con
	- Unputer?

- **Operator: unitary**
 - Single qubit: $X(\sigma_x)$, $Y(\sigma_y)$, $Z(\sigma_z)$, $Rx(\theta)(e^{i\theta\sigma_x})$, ...

•
$$X_n = I \otimes I \otimes \cdots \otimes X \otimes \cdots$$

- Two(Multi) qubits: CNOT($\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}$)
- Measurements: Hermitian
 - X, Y, Z
- The Hamiltonian should be expressed in XYZs!

Jordan-Wigner Transformation

• Keeps the anti-commuting relation of ϕ .

Preparing the Hadronic State

- Hadronic states are the eigenstates of the Hamiltonian with certain quantum numbers.
- e.g.: How to find the (lowest few) eigenstates of a Hamiltonian?
- Variational method!
- A quantum computing version: Quantum alternating operator ansatz(QAOA) [E. Farhi, J. Goldstone, S. Gutmann, arXiv:1411.4028]

• Divide the Hamiltonian

$$H = H_1 + H_2 + \dots + H_k$$

- $[H_i, H_{i+1}] \neq 0$
- Each H_i preserves the same symmetry as H
- Parameterized symmetry-preserving operator $U(\theta) \equiv \left[\exp(i\,\theta_{ij}H_j) \right]$ $i=1 \ j=1$
- The m-th state with quantum number *l* is $|\psi_{lm}(\theta)\rangle = U(\theta) |\psi_{lm}\rangle$

• Cost function: weighted combination of the energy expectations [J. S. Pedernales, R. D. Candia, I. L. Egusquiza, J. Casanova, E. Solano, Phys. Rev. Lett. 113(2014), 020505]

$$E_{l}(\theta) = \sum_{i=1}^{k} w_{li} \langle \psi_{li}(\theta) | H | \psi_{li}(\theta) \rangle$$
$$\omega_{l1} > \omega_{l2} > \dots > \omega_{lk}$$

- The eigenstates are obtained by minimizing E_l
- The minimizing is done by a classical computer.
- Hybrid algorithm

QAQA

Dynamical Correlation Function

and the controlled gates. [A. Francis, J. K. Fredrick's A. F. Kemper, Phys. Rev. B 101(2020), 014411]

•
$$|\alpha\rangle_a |0\rangle_b \rightarrow \frac{\sqrt{2}}{2} |\alpha\rangle_a (|0\rangle_b + |1\rangle_b) \rightarrow |\phi\rangle \equiv \frac{\sqrt{2}}{2} (|\alpha\rangle_a |0\rangle_b + \hat{O} |\alpha\rangle_a |1\rangle_b)$$

• $\langle \phi | I_a \otimes X_b | \phi \rangle = \frac{1}{2} + Re(\langle \alpha | \hat{O} | \alpha \rangle)$
• $\langle \phi | I_a \otimes Y_b | \phi \rangle = \frac{1}{2} - Im(\langle \alpha | \hat{O} | \alpha \rangle)$
• What we measure: $S_{mn}(t) = \langle h | \hat{O}_{mn}(t) | h \rangle$, $\hat{O}_{mn}(t) = e^{iHt} \Xi_m^3 \sigma_m^i e^{-iHt} \Xi_n^3 \sigma_n^j$

•
$$|\alpha\rangle_{a}|0\rangle_{b} \rightarrow \frac{\sqrt{2}}{2}|\alpha\rangle_{a}(|0\rangle_{b}+|1\rangle_{b}) \rightarrow |\phi\rangle \equiv \frac{\sqrt{2}}{2}(|\alpha\rangle_{a}|0\rangle_{b}+\hat{O}|\alpha\rangle_{a}|1\rangle_{b})$$

• $\langle\phi|I_{a}\otimes X_{b}|\phi\rangle = \frac{1}{2} + Re(\langle\alpha|\hat{O}|\alpha\rangle)$
• $\langle\phi|I_{a}\otimes Y_{b}|\phi\rangle = \frac{1}{2} - Im(\langle\alpha|\hat{O}|\alpha\rangle)$
• What we measure: $S_{mn}(t) = \langle h|\hat{O}_{mn}(t)|h\rangle$, $\hat{O}_{mn}(t) = e^{iHt}\Xi_{m}^{3}\sigma_{m}^{i}e^{-iHt}\Xi_{n}^{3}\sigma_{n}^{j}$

•
$$|\alpha\rangle_{a}|0\rangle_{b} \rightarrow \frac{\sqrt{2}}{2}|\alpha\rangle_{a}(|0\rangle_{b}+|1\rangle_{b}) \rightarrow |\phi\rangle \equiv \frac{\sqrt{2}}{2}(|\alpha\rangle_{a}|0\rangle_{b}+\hat{O}|\alpha\rangle_{a}|1\rangle_{b})$$

• $\langle\phi|I_{a}\otimes X_{b}|\phi\rangle = \frac{1}{2} + Re(\langle\alpha|\hat{O}|\alpha\rangle)$
• $\langle\phi|I_{a}\otimes Y_{b}|\phi\rangle = \frac{1}{2} - Im(\langle\alpha|\hat{O}|\alpha\rangle)$
• What we measure: $S_{mn}(t) = \langle h|\hat{O}_{mn}(t)|h\rangle$, $\hat{O}_{mn}(t) = e^{iHt}\Xi_{m}^{3}\sigma_{m}^{i}e^{-iHt}\Xi_{n}^{3}\sigma_{n}^{j}$

• The measurement on the quantum computer is achieved by one auxiliary qubit

Full Quantum Circuit

• ma = 0.2, 12 qubits

g	0.2	0.4	0.6	0.8	1.0
$M_{h,QC}a$	1.002	1.810	2.674	3.534	4.352
$M_{h,NUM}a$	1.001	1.801	2.659	3.509	4.342

- QAOA has good accuracy
- For ma = 0.8, the quark masses are dominant.

Meson Mass

• The majority of meson mass comes from interaction rather than quark mass.

Correlation Function

• Real part consistent with o: $f_q(x) = -f_q(-x) = f_{\bar{q}}(x)$

- Error bars/bands from interpolation methods.
- QC results matches well with exact diagonalization ones.
- Qualitative in agreement with pion PDFs in 2d QCD[Y. Jia, S. Liang, X. Xiong, R. Yu, Phys. Rev. D 98(2018), 054011].

Meson PDF

Light-Cone Distribution Amplitudes

- The projection amplitude of a hadron onto multiple-parton states
- Describes the formation / decay of a hadron.

•
$$\phi_h(x) = \frac{1}{f_h} \int dz e^{-i(x-1)n \cdot Pz} \langle \Omega | \bar{\psi}(zn) \rangle$$

• Now we want to measure $\langle \alpha | \hat{O} | \beta \rangle$ • We just need to prepare $| \phi' \rangle = \frac{1}{\sqrt{2}} (| \Omega \rangle | 0 \rangle + \hat{O} | h \rangle | 1 \rangle)$

 $\gamma^{+}\psi(0) | h(P) \rangle$

- m_h is fixed to be $1.5a^{-1}$
- Asymptotic corresponds to $\phi_h(x) = 6x(1 x)$

Results

- Converges to asymptotic result.

Results

• Peak gets narrower with decreasing coupling constant or increasing hadron mass

Scattering Amplitude

- We have done simulating correlation functions.
- How about scattering amplitudes?
 - Especially nonperturbative ones!
- Current framework (Science 336, 1130; Quant. Inf, Compute. 14, 1014)
 - General
 - High lattice size requirement
 - Difficulty with bounded states
- But correlation functions and scattering amplitudes are connected!

LSZ Reduction Formula

$$i\mathcal{M} = R^{n/2} \lim_{p_i^2 \to m^2, k_j^2 \to m^2} G(\{p_i\}, \{k_i\}) \times \left(\sum_{r=1}^{n_{out}} K^{-1}(p_r)\right) \left(\sum_{s=1}^{n_{in}-1} K^{-1}(k_s)\right)$$

$$G(\{p_i\}, \{k_j\}) = \left(\sum_{i=1}^{n_{out}} \int d^4 x_i e^{ip_i \cdot x_i}\right) \left(\sum_{j=1}^{n_{in}} \int d^4 x_j e^{ik_j \cdot y_j}\right) \langle \Omega \mid \phi(x_1) \cdots \phi(x_{n_{out}}) \phi^{\dagger}(y_1) \cdots \phi^{\dagger}(y_{n_{in}-1}) \phi^{\dagger}(0) \mid \Omega$$

$$K(p) = \int d^4 x e^{p \cdot x} \langle \Omega \mid T\{\phi(x)\phi^{\dagger}(0) \mid \Omega \rangle$$

incoming and outgoing particles.

 $R = |\langle \Omega | \phi(0) | h(p = 0) \rangle|^2$

• Scattering function is a n-point correlation function divided by propagators of

Quark Proporgator

- p_1 is fixed to be zero.
- Poles at $p_0 = \pm m$.
- Additional poles may be bound states.

- First direct simulation of the parton structure on a quantum computer
 - Meson PDF
 - LCDA
 - Scattering Amplitudes
- Quantum algorithm agrees well with exact diagonalization
- Results qualitatively reasonable
- Methods generally applicable

Thank you!

