Real-time non-perturbative dynamics in Schwinger model: jet production, chiral magnetic wave, and more

References:

2301.11991: Florio, Frenklakh, Ikeda, Kharzeev, Korepin, SS, Yu 2305.00996: Ikeda, Kharzeev, Meyer, SS 2305.05685: Ikeda, Kharzeev, SS

Shuzhe Shi (施舒哲) Tsinghua University

- motivation: real time dynamics in QFT
- model set up
- jet production
 - jet production
 - vector and axial charge transport
 - phase structure
- summary and outlook

motivation

"first principle" microscopic theory: quantum field theory $L \leftrightarrow H$

"first principle" microscopic theory: quantum field theory $L \leftrightarrow H$

perturbative calculation: scattering process, thermodynamics, transport

non-perturbative calculation(lattice QFT): thermodynamics, transport

"first principle" microscopic theory: quantum field theory $L \leftrightarrow H$

perturbative calculation: scattering process, thermodynamics, transport

non-perturbative calculation(lattice QFT): thermodynamics, transport

real time dynamics of non-perturbative theory?

"first principle" microscopic theory: quantum field theory $L \leftrightarrow H$

perturbative calculation: scattering process, thermodynamics, transport

non-perturbative calculation(lattice QFT): thermodynamics, transport

time evolution of a quantum (field) state:

real time dynamics of non-perturbative theory?

 $|\psi(t)\rangle = e^{-iHt}|\psi(0)\rangle$

Ideally, quantum simulation for full QCD in 3+1 D, but ...

1

1+1D Schwinger model with time-dependent external source

$$H(t) = \int \left(\frac{E^2}{2} - \bar{\psi}(i\gamma^1\partial_z + i\gamma^2)\right) dz$$

E: electric field A: electric potential $\psi, \bar{\psi}$: fermion field

 $-g\gamma^{1}A-m)\psi dx.$

 $L(t) = \left[\left(-\frac{F^{\mu\nu}F_{\mu\nu}}{4} + \bar{\psi}(i\gamma^{\mu}\partial_{\mu} - g\gamma^{\mu}A_{\mu} - m)\psi \right) dx \right].$

1+1D Schwinger model with time-dependent external source

E: electric field A: electric potential $\psi, \bar{\psi}$: fermion field

$$-g\gamma^{1}A - m)\psi$$
dx.
static energy
coupling b/w electric and fermion fie

kinetic energy

electric field energy

1+1D Schwinger model with time-dependent external source

$$H(t) = \int \left(\frac{E^2}{2} - \bar{\psi}(i\gamma^1\partial_z - g\gamma^1A - m)\psi - j_{ext}^1(t)A\right) dx.$$

$$L(t) = \int \left(-\frac{F^{\mu\nu}F_{\mu\nu}}{4} + \bar{\psi}(i\gamma^\mu\partial_\mu - g\gamma^\mu A_\mu - m)\psi - j_{ext}^\mu(t)A_\mu\right) dx$$

E: electric field A: electric potential $\psi, \overline{\psi}$: fermion field

coupling w/ external source (jets)

 $j_{\text{ext}}^{1}(x,t) = g\left[\delta(x-t) + \delta(x+t)\right]\theta(t)$

1+1D Schwinger model with time-dependent external source

$$H(t) = \int \left(\frac{E^2}{2} - \bar{\psi}(i\gamma^1\partial_z + i\gamma^2)\right) dz$$

E: electric field A: electric potential $\psi, \bar{\psi}$: fermion field

 $-g\gamma^{1}A - m)\psi - j_{\text{ext}}^{1}(t)A \bigg) \mathrm{d}x.$

1+1D Schwinger model with time-dependent external source

$$H(t) = \int \left(\frac{E^2}{2} - \bar{\psi}(i\gamma^1\partial_z + i\gamma^2)\right) dz$$

discretize and matrix(gate) representation:

 $-g\gamma^{1}A - m)\psi - j_{\text{ext}}^{1}(t)A \bigg) \mathrm{d}x.$

1+1D Sc

$\chi_1 \quad \chi_2 \quad \chi_3$

discretize and matrix(gate) representation: staggered fermion that satisfied anti-commutation: $\{\psi_a(x), \psi_b^{\dagger}(y)\} = \delta_{a,b}\delta(x-y)$

$$\psi(x = a n) \qquad \leftrightarrow \qquad \frac{1}{\sqrt{a}} \begin{pmatrix} \chi_{2n} \\ \chi_{2n-1} \end{pmatrix}$$

Kogut-Susskind

1+1D Sc

$\chi_1 \quad \chi_2 \quad \chi_3$

discretize and matrix(gate) representation:

$$\psi(x = a n) \qquad \leftrightarrow \qquad \frac{1}{\sqrt{a}} \begin{pmatrix} \chi_{2n} \\ \chi_{2n-1} \end{pmatrix}$$

Kogut-Susskind

staggered fermion that satisfied anti-commutation: $\{\psi_a(x), \psi_b^{\dagger}(y)\} = \delta_{a,b}\delta(x-y)$

 $\chi_n = \frac{X_n - iY_n}{2} \prod_{n=1}^{n-1} (-iZ_m)$ m=1 $X_n \equiv I \otimes \cdots \otimes I \otimes X \otimes I \otimes \cdots \otimes I$ n^{th} (n)3 St

1+1D Sc

$\chi_1 \quad \chi_2 \quad \chi_3$

discretize and matrix(gate) representation:

$$\psi(x = a n) \qquad \leftrightarrow \qquad \frac{1}{\sqrt{a}} \begin{pmatrix} \chi_{2n} \\ \chi_{2n-1} \end{pmatrix}$$

Kogut-Susskind

staggered fermion that satisfied anti-commutation: $\{\psi_a(x), \psi_b^{\dagger}(y)\} = \delta_{a,b}\delta(x-y)$

$$\chi_n = \frac{X_n - iY_n}{2} \prod_{m=1}^{n-1} (-iZ_m)$$

Jordan-Wigner

 $\{\chi_n^{\dagger}, \chi_m\} = \delta_{nm}, \quad \{\chi_n^{\dagger}, \chi_m^{\dagger}\} = \{\chi_n, \chi_m\} = 0.$

1+1D Sc

discretize and matrix(gate) representation: gauge field fixed by Gauss' law: $\partial_1 E$

$$E(x = an) \quad \leftrightarrow \quad L_n$$

staggered fermion that satisfied anti-commutation: $\{\psi_a(x), \psi_b^{\dagger}(y)\} = \delta_{a,b}\delta(x-y)$ $\mathbf{\cap}$.

$$f - g \bar{\psi} \gamma^0 \psi = j_{\text{ext}}^0$$

$$L_n - L_{n-1} - \frac{Z_n + (-1)^n}{2} = \frac{1}{g} \int_{(n-1/2)a}^{(n+1/2)a} dx j_{\text{ext}}^0(x, x)$$

1+1D Schwinger model with time-dependent external source

$$H(t) = \int \left(\frac{E^2}{2} - \bar{\psi}(i\gamma^1\partial_z - g\gamma^1A - m)\psi - j_{\text{ext}}^1(t)A\right) dx.$$

Pauli matrices: X, Y, Z discretize and matrix(gate) representation: staggered fermion that satisfied anti-commutation: $\{\psi_a(x), \psi_b^{\dagger}(y)\} = \delta_{a,b}\delta(x-y)$ gauge field fixed by Gauss' law: $\partial_1 E - g \bar{\psi} \gamma^0 \psi = j_{ext}^0$

$$H(t) = \frac{1}{4a} \sum_{n=1}^{N-1} (X_n X_{n+1} + Y_n Y_{n+1}) + \frac{m}{2} \sum_{n=1}^{N} (-1)^n Z_n + \frac{a g^2}{2} \sum_{n=1}^{N-1} L_n^2(t) .$$

dimension of state vector $= 2^N$ dimension of Hamiltonian = $2^N \times 2^N$

dimension of state vector = 2^N dimension of Hamiltonian = $2^N \times 2^N$ sparse ~ $2N \times 2^N$

dimension of state vector $= 2^N$ dimension of Hamiltonian = $\frac{2^N \times 2^N}{N}$ sparse ~ $2N \times 2^N$

N	dimension	memory of Hamiltonian	# of qubit (N)
8	256	~ 131 kB	8
12	4,096	~ 3.1 MB	12
16	65,536	~ 67 MB	16
20	1,048,576	~ 1.3 GB	20
24	16,777,216	~ 26 GB	24
28	268,435,456	~ 481 GB	28

unrealistic in a "classical" computer, but plausible in the state-of-art quantum computer?

dimension of state vector = 2^N dimension of Hamiltonian = $\frac{2^N \times 2^N}{2N \times 2^N}$ sparse ~ $2N \times 2^N$

N	dimension	memory of Hamiltonian	# of qubit (N)
8	256	~ 131 kB	8
12	4,096	~ 3.1 MB	12
16	65,536	~ 67 MB	16
20	1,048,576	~ 1.3 GB	20
24	16,777,216	~ 26classi	cal hardware in this
28	268,435,450	~ 481 GB	28

performance not satisfying...

1+1D Schwinger model with time-dependent external source

$$H(t) = \int \left(\frac{E^2}{2} - \bar{\psi}(i\gamma^1\partial_z - g\gamma^1A - m)\psi - j_{\text{ext}}^1(t)A\right) dx.$$

discretize and matrix(gate) representation: gauge field fixed by Gauss' law: $\partial_1 E - g \bar{\psi} \gamma^0 \psi = j_{ext}^0$

$$H(t) = \frac{1}{4a} \sum_{n=1}^{N-1} (X_n X_{n+1} + Y_n Y_{n+1}) + \frac{m}{2} \sum_{n=1}^{N} (-1)^n Z_n + \frac{a g^2}{2} \sum_{n=1}^{N-1} L_n^2(t) .$$

(repeating 4)

Pauli matrices: X, Y, Z

staggered fermion that satisfied anti-commutation: $\{\psi_a(x), \psi_b^{\dagger}(y)\} = \delta_{a,b}\delta(x-y)$

real-time evolution

time-dependent Schroedinger equation $\frac{\partial}{\partial t} |\psi(t)\rangle = -iH|\psi(t)\rangle$

on:

$$q_{n,t} \equiv \langle \psi^{\dagger}(a n)\psi(a n) \rangle_{t} = \frac{\langle Z_{n} \rangle_{t} + (-1)}{2a}$$

$$Q_{t} \equiv \int \langle \psi^{\dagger}(x)\psi(x) \rangle_{t} \, \mathrm{d}x = a \sum_{n=1}^{N} q_{n,t},$$

$$\nu_{n,t} \equiv \langle \bar{\psi}(a n)\psi(a n) \rangle_{t} = \frac{(-1)^{n}\langle Z_{n} \rangle_{t}}{2a},$$

$$\nu_{t} \equiv \int \langle \bar{\psi}(x)\psi(x) \rangle_{t} \, \mathrm{d}x = a \sum_{n=1}^{N} \nu_{n,t},$$

$$\Pi_{n,t} \equiv \langle E(a n) \rangle_{t} = g \, \langle L_{n} \rangle_{t},$$

$$E_{\text{ele},t} \equiv \frac{1}{2} \int \langle E^{2}(x) \rangle_{t} \, \mathrm{d}x = \frac{a g^{2}}{2} \sum_{n=1}^{N-1} \langle L_{n}^{2} \rangle_{t}$$

I. jet production

A. Florio, D. Frenklakh, K. Ikeda, D. Kharzeev, V. Korepin, SS, K. Yu PhysRevLett.131.021902 (arXiv: 2305.05685)

real-time evolution

initial state: vacuum $H(t=0)|\psi(t=0)\rangle$

$$\frac{\partial}{\partial t} |\psi(t)\rangle = -iH(t) |\psi(t)\rangle$$

$$= E_0 | \psi(t=0) \rangle$$

$$|\psi_{\text{uncorr}}\rangle = \frac{1}{\sqrt{2}} |\psi_{\text{left}}\rangle + \frac{e^{i\varphi}}{\sqrt{2}} |\psi_{\text{right}}\rangle$$
$$\langle \langle \psi_{\text{uncorr}} | O | \psi_{\text{uncorr}} \rangle \rangle$$
$$\equiv \int \langle \psi_{\text{uncorr}} | O | \psi_{\text{uncorr}} \rangle \frac{\mathrm{d}\varphi}{2\pi}$$

$$=\frac{\langle \psi_{\text{left}} | O | \psi_{\text{left}} \rangle}{2} + \frac{\langle \psi_{\text{right}} | O | \psi_{\text{right}} \rangle}{2}$$

observables of entanglement

observables of entanglement

II. Vector & Axial Charge Transport

axial and vector transport in Schwinger model

in Schwinger model: $Q = J_5$,

 $Q = J_5, \quad J = -Q_5$

axial and vector transport in Schwinger model

in Schwinger model: $Q = J_5$,

 $Q = J_5, \quad J = -Q_5$

$$Q_n \equiv \langle \bar{\psi}(a\,n)\gamma^0\psi(a\,n)\rangle = \frac{\langle Z_n\rangle + (-1)^n}{2a},$$
$$Q_{5,n} \equiv \langle \bar{\psi}(a\,n)\gamma^5\gamma^0\psi(a\,n)\rangle = \frac{\langle X_nY_{n+1} - Y_nX_{n+1}\rangle}{4a}$$

massless case

z / a

z / a

even more massive

z / a

more drastic for greater mass

$$H | k \rangle = E_k | k \rangle$$
$$| \Psi(t = 0) \rangle = \sum_k c_k | k \rangle$$
$$O(t) \equiv \langle \Psi(t) | O | \Psi(t) \rangle = \sum_{k,l} c_k c_l^* e^{i(E_l - E_k)t} \langle l | O | \Psi(t) \rangle$$

oscillatio

$$H|k\rangle = E_k|k\rangle$$

$$|\Psi(t=0)\rangle = \sum_k c_k|k\rangle$$

$$O(t) \equiv \langle \Psi(t)|O|\Psi(t)\rangle = \sum_{k,l} c_k c_l^* e^{\frac{i(E_l - E_k)t}{l}} \langle l|O|$$
on frequency \leftarrow energy difference
oscillation strength \leftarrow matrix elements

$$H|k\rangle = E_k|k\rangle$$

$$|\Psi(t=0)\rangle = \sum_k c_k|k\rangle$$

$$O(t) \equiv \langle \Psi(t)|O|\Psi(t)\rangle = \sum_{k,l} c_k c_l^* e^{\frac{i(E_l - E_k)t}{l}} \langle l|O|$$
on frequency \leftarrow energy difference
oscillation strength \leftarrow matrix elements

$$H | k \rangle = E_k | k \rangle$$
$$| \Psi(t = 0) \rangle = \sum_k c_k | k \rangle$$
$$O(t) \equiv \langle \Psi(t) | O | \Psi(t) \rangle = \sum_{k,l} c_k c_l^* e^{\frac{i(E_l - E_k)t}{2}} \langle l | O | \Psi(t) \rangle$$

$$H | k \rangle = E_k | k \rangle$$
$$| \Psi(t = 0) \rangle = \sum_k c_k | k \rangle$$
$$O(t) \equiv \langle \Psi(t) | O | \Psi(t) \rangle = \sum_{k,l} c_k c_l^* e^{\frac{i(E_l - E_k)t}{2}} \langle l | O | \Psi(t) \rangle$$

axial charge: ground state \leftrightarrow excitation

$$H | k \rangle = E_k | k \rangle$$
$$| \Psi(t = 0) \rangle = \sum_k c_k | k \rangle$$
$$O(t) \equiv \langle \Psi(t) | O | \Psi(t) \rangle = \sum_{k,l} c_k c_l^* e^{\frac{i(E_l - E_k)t}{2}} \langle l | O | \Psi(t) \rangle$$

vector charge: excitation ↔ excitation

axial charge: ground state \leftrightarrow excitation

real-time evolution

III. Phase Structure

K. Ikeda, D. Kharzeev, R. Meyer, S. Shi, arXiv: 2305.00996

thermodynamic properties

• finite temperature, finite chemical potential:

$\langle O \rangle_{\rm th} \equiv {\rm Tr}(\rho_{\rm th} O)$

 $\rho_{\rm th} \equiv \frac{e^{-(H-\mu Q)/T}}{\text{Tr}(e^{-(H-\mu Q)/T})}$

different signals of the critical point

- real-time dynamics in Schwinger model
 - jet production: spread out of light cone, creation of fermionantifermion pairs
 - charge transport: thumper and breather modes
 - critical point detected by different signals
- Need quantum computers to approach the continuum limit.

Students and Postdocs are welcome!

(so are questions/comments)

Backup Slides

electric field