



# Updates from JAM on gluon helicity PDF

### Yiyu Zhou University of Turin



Zhou, Sato & Melnitchouk: <u>2201.02075</u> Whitehill, Zhou, Sato & Melnitchouk: <u>2210.12295</u> Karpie, Whitehill, Melnitchouk, Monahan, Orginos, Qiu, Richards, Sato & Zafeiropoulos: <u>2310.18179</u> Hunt-Smith, Cocuzza, Melnitchouk, Sato, Thomas & White: <u>2403.08117</u>

## **Proton spin decomposition**

What is the decomposition of the proton spin?

- current extraction of  $\Delta \Sigma$  is around 0.3 (contribution from quarks)
- spin can be extracted from parton distribution functions (PDFs)
- orbital angular momentum can be extracted from GPDs





#### How well do we know the gluon polarization in the proton?

Y. Zhou, N. Sato, and W. Melnitchouk (Jefferson Lab Angular Momentum (JAM) Collaboration) Phys. Rev. D **105**, 074022 – Published 25 April 2022



 $|\Delta g| \leq g$ 

- Sign of  $\Delta g$  is not uniquely determined by existing experimental data (DIS  $W^2 > 10 \text{ GeV}^2$ )
- PDF positivity constraints + data strongly disfavors the negative  $\Delta g$
- Negative  $\Delta g$  violates significantly PDF positivity constraint
- PDF positivity is not a strict requirement in QCD







$$+ \sum_{q,q'} a_{qq'} [\Delta q \otimes \Delta q'] + \mathcal{O}(lpha_s),$$

 $\Delta g$  enters quadratically, and different channels contribute with different signs and magnitudes

### Charged-pion cross sections and double-helicity asymmetries in polarized p + p collisions at $\sqrt{s} = 200$ GeV

A. Adare *et al.* (PHENIX Collaboration) Phys. Rev. D **91**, 032001 – Published 2 February 2015 Measurement of charged pion double spin asymmetries at midrapidity in longitudinally polarized p + p collisions at  $\sqrt{s}$  = 510 GeV

U. Acharya *et al.* (PHENIX Collaboration) Phys. Rev. D **102**, 032001 – Published 5 August 2020

 $\pi^+$  $\pi^{-}$  $\sqrt{s} = 200 \text{ GeV}$ JAM ( $\Delta q > 0$ ) 0.050 0.10 JAM ( $\Delta q < 0$ ) asymmetry PHENIX 0.025¢ 0.05 0.0000.025 0.00 0.06 0.09 0.070.080.100.060.070.080.090.10 $\pi^{\pm}$  $\sqrt{s} = 510 \text{ GeV}$ 0.02 0.01 Inclusive 0.01 0.000.00 -0.01-0.010.03 0.04 0.05 0.03 0.04 0.05  $x_T$  $x_T$ 

PHENIX collaboration stated that the ordering of π<sup>+</sup>, π<sup>o</sup> and π<sup>-</sup> asymmetries can help discriminate Δg solutions

• The two solutions for  $\Delta g$  found by JAM describe the data equally well



PHENIX: 1409.1907, 2004.02681

Measurement of Direct-Photon Cross Section and Double-Helicity Asymmetry at  $\sqrt{s} = 510$  GeV in  $\vec{p} + \vec{p}$  Collisions

N. J. Abdulameer *et al.* (PHENIX Collaboration) Phys. Rev. Lett. **130**, 251901 – Published 21 June 2023





- PHENIX collaboration stated that negative  $\Delta g$  is disfavored by more than 2.8 $\sigma$
- However, only last 3 high- $p_T A_{LL}$  points are well described in pQCD (see denominator of  $A_{LL}$ )

#### Accessing gluon polarization with high- $P_T$ hadrons in SIDIS

R. M. Whitehill, Yiyu Zhou, N. Sato, and W. Melnitchouk (Jefferson Lab Angular Momentum (JAM) Collaboration) Phys. Rev. D **107**, 034033 – Published 27 February 2023

### SIDIS with large $p_T$ : $e(\ell) + N(P) \rightarrow e(\ell') + h(P_h) + X$



$$A_{LL}^{\text{jet}}(p_T, y) \propto a_{gg}[\Delta g \otimes \Delta g] + \sum_q a_{qg}[\Delta q \otimes \Delta g] + \sum_q a_{qg}[\Delta q \otimes \Delta g] + \sum_{q,q'} a_{qq'}[\Delta q \otimes \Delta q'] + \mathcal{O}(\alpha_s),$$
$$Q = A_{LL}^{\text{SIDIS}} \sim \Delta g + \Delta q + \cdots$$

#### Gluon helicity from global analysis of experimental data and lattice QCD loffe time distributions

J. Karpie, R. M. Whitehill, W. Melnitchouk, C. Monahan, K. Orginos, J.-W. Qiu, D. G. Richards, N. Sato, and S. Zafeiropoulos (Jefferson Lab Angular Momentum and HadStruc Collaborations) Phys. Rev. D **109**, 036031 – Published 27 February 2024

### Toward the determination of the gluon helicity distribution in the nucleon from lattice quantum chromodynamics

Colin Egerer, Bálint Joó, Joseph Karpie, Nikhil Karthik, Tanjib Khan, Christopher J. Monahan, Wayne Morris, Kostas Orginos, Anatoly Radyushkin, David G. Richards, Eloy Romero, Raza Sabbir Sufian, and Savvas Zafeiropoulos (HadStruc Collaboration)

Phys. Rev. D **106**, 094511 – Published 28 November 2022



$$\widetilde{M}^{\mu\nu;\alpha\beta}(p,z) = \langle p | F^{\mu\nu}(0) W(0;z) \widetilde{F}^{\alpha\beta}(z) | p \rangle$$

$$\widetilde{\mathfrak{M}}(\nu, z^2) = \frac{\widetilde{M}_{00}(p, z)/p_0 p_3 Z_L(z_3/a)}{M_{00}(p = 0, z)/m^2}$$

$$\begin{split} \widetilde{\mathfrak{M}}(\nu,z^{2})\langle x_{g}\rangle_{\mu^{2}} &= \widetilde{\mathcal{I}}_{p}(\nu,\mu^{2}) - \frac{\alpha_{s}N_{c}}{2\pi} \int_{0}^{1} \mathrm{d}u \, \widetilde{\mathcal{I}}_{p}(u\nu,\mu^{2}) \Big\{ \ln\left(z^{2}\mu^{2}\frac{e^{2\gamma_{E}}}{4}\right) \\ &\quad \left(\left[\frac{2u^{2}}{\bar{u}}+4u\bar{u}\right]_{+}-\left(\frac{1}{2}+\frac{4}{3}\frac{\langle x_{S}\rangle_{\mu^{2}}}{\langle x_{g}\rangle_{\mu^{2}}}\right)\delta(\bar{u})\right) \\ &\quad +4\left[\frac{u+\ln(1-u)}{\bar{u}}\right]_{+}-\left(\frac{1}{\bar{u}}-\bar{u}\right)_{+}-\frac{1}{2}\delta(\bar{u})+2\bar{u}u\Big\} \\ &\quad -\frac{\alpha_{s}C_{F}}{2\pi}\int_{0}^{1} \mathrm{d}u \, \widetilde{\mathcal{I}}_{S}(u\nu,\mu^{2})\Big\{\ln\left(z^{2}\mu^{2}\frac{e^{2\gamma_{E}}}{4}\right)\widetilde{\mathcal{B}}_{gq}(u)+2\bar{u}u\Big\}+\mathcal{O}(\Lambda_{\mathrm{QCD}}^{2}z^{2}), \end{split}$$

Egerer et al: <u>2207.08733</u>





- Good description of global data after inclusion of LQCD for both solutions for  $\Delta g$
- On the basis of  $\chi^2$ , LQCD cannot discriminate fully the sign of  $\Delta g$



$$\chi^{2} = (\boldsymbol{d} - \boldsymbol{t})^{T} \boldsymbol{\Sigma}^{-1} (\boldsymbol{d} - \boldsymbol{t})$$
$$= (\boldsymbol{d} - \boldsymbol{t})^{T} \boldsymbol{U} \boldsymbol{D}^{-1} \boldsymbol{U}^{T} (\boldsymbol{d} - \boldsymbol{t})$$
$$= \sum_{i} \operatorname{res}_{i}^{*2}.$$

- Projections of residuals reveal strong correlations between LQCD data points
- The correlations prevent determination of sign of  $\Delta g$



- LQCD distorts significantly the negative Δ*g* at *x* > 0.3
- Note that both solutions violate PDF positivity bounds in *x* > 0.3
- Before inclusion of LQCD data,  $\Delta\Sigma$  were stable for both solutions
- Inclusion of LQCD data forces the ΔΣ to become negative at *x* > 0.4 for the negative gluon solution



### New Data-Driven Constraints on the Sign of Gluon Polarization in the Proton

N. T. Hunt-Smith, C. Cocuzza, W. Melnitchouk, N. Sato, A. W. Thomas, and M. J. White (JAM Collaboration-Spin PDF Analysis Group) Phys. Rev. Lett. **133**, 161901 – Published 16 October 2024

# Higgs production at RHIC and the positivity of the gluon helicity distribution

Daniel de Florian, Stefano Forte, and Werner Vogelsang Phys. Rev. D **109**, 074007 – Published 10 April 2024



- Higgs  $A_{LL}$  is directly sensitive to  $\Delta g$  squared at LO
- Calculations of A<sub>LL</sub> (Higgs) with negative Δg can lead to unphysical results (using non-LQCD based analysis)

$$A_{LL}^{\mathrm{H}}(\tau) = \frac{[\Delta g \otimes \Delta g]}{[g \otimes g]} + \mathcal{O}(\alpha_s),$$

De Florian, Forte & Vogelsang: 2401.10814

### Can Higgs $A_{LL}$ fully discriminate negative $\Delta g$ ?



Negative  $\Delta g$  with LQCD constraints still admits a physical Higgs  $A_{LL}$ 

|                       | $\chi^2_{ m red}(\Delta g>0)$ |        |                 | $\chi^2_{ m red}(\Delta g < 0)$ |        |                 | $oldsymbol{N}$      |
|-----------------------|-------------------------------|--------|-----------------|---------------------------------|--------|-----------------|---------------------|
| Reaction              | baseline                      | + LQCD | + high- $x$ DIS | baseline                        | + LQCD | + high- $x$ DIS |                     |
| Polarized             |                               |        |                 |                                 |        |                 |                     |
| Inclusive DIS         | 0.95                          | 0.96   | 1.21            | 0.98                            | 1.12   | 1.25            | $1735^{*}$          |
| SIDIS                 | 0.85                          | 0.84   | 1.08            | 0.84                            | 0.96   | 1.11            | 231                 |
| Inclusive jets        | 0.84                          | 0.89   | 0.90            | 0.88                            | 1.10   | 1.44            | 83                  |
| Inclusive $W^{\pm}/Z$ | 0.60                          | 0.60   | 0.99            | 0.83                            | 0.84   | 1.32            | 18                  |
| Total                 | 0.89                          | 0.90   | 1.18            | 0.92                            | 1.06   | 1.24            | 2067                |
| Unpolarized           |                               |        |                 |                                 |        |                 |                     |
| Inclusive DIS         | 1.17                          | 1.17   | 1.17            | 1.18                            | 1.18   | 1.19            | 3908                |
| SIDIS                 | 0.99                          | 0.99   | 1.04            | 0.99                            | 0.99   | 1.02            | 1490                |
| Inclusive jets        | 1.28                          | 1.28   | 1.30            | 1.29                            | 1.29   | 1.30            | 198                 |
| Drell-Yan             | 1.21                          | 1.21   | 1.21            | 1.24                            | 1.24   | 1.24            | 205                 |
| Inclusive $W^{\pm}/Z$ | 1.01                          | 1.01   | 1.01            | 1.03                            | 1.03   | 1.04            | 153                 |
| Total                 | 1.14                          | 1.14   | 1.14            | 1.15                            | 1.15   | 1.15            | $\boldsymbol{5954}$ |
| SIA                   | 0.86                          | 0.86   | 0.89            | 0.90                            | 0.90   | 0.92            | 564                 |
| LQCD                  |                               | 0.57   | 0.58            |                                 | 1.18   | 3.92            | 48                  |
| Total                 | 1.08                          | 1.10   | 1.13            | 1.10                            | 1.12   | 1.17            | 8633                |

1370 additional data points for pol DIS (+ high-*x* DIS)



- With inclusion of high-x DIS DSAs, LQCD data strongly disfavor negative  $\Delta g$ solution
- Combined DSA from jet and high-*x* DIS with LQCD allows us to discriminate the sign of  $\Delta g$  for the first time!



# **Summary & outlook**

- For the first time, we were able to discriminate the sign of  $\Delta g$  using data-driven approach
- Constraints from LQCD along with DSAs from jets and DIS at large-*x* were crucial to achieve the resolution of  $\Delta g$  sign
- Inclusion of LQCD is becoming increasingly important in global analysis
- Experimental constraints at large *x* on Δ*g* are still scarce, and more data are needed to reach precision similar to unpolarized gluon density (RHIC: dijet, EIC: small *x*, JLab-12/22: high *x*)

