

Precision studies of the DVCS process at JLab

Julie Roche

- Generalized Parton Distributions (GPD) are accessible through many exclusive processes. So far, the most studied channels are Deeply Virtual Compton Scattering (DVCS) and Deep Virtual Meson production (DVMP).
- Our JLab Hall A/C collaboration measures DVCS and DVMP- π 0 absolute cross-section using a "simple" dedicated apparatus since 2006.
- Our precise (5%) measurements are essential to interpret the data.
- We just completed a new set of measurements in Hall C/JLab using a new PbWO₄ calorimeter and expanding our kinematic reach.

DIS Parton Distribution Functions

Elastic Form Factors

No information on the spatial location of the constituents

No information about the underlying dynamics of the system

> FOREVER OHIO

Generalized Parton Distribution Function : 3-D imaging of the nucleon with access to **correlations** between transverse spatial distribution and longitudinal momentum distributions.

Exclusive reactions: handbag diagram

- x: average long. momentum
- ξ : long. mom. difference $\simeq x_{\rm B}/(2 x_{\rm B})$
- t: four-momentum transfer related to b_{\perp} via Fourier transform

GPDs and factorization

x is not accessible, one measures $CFF(\xi,t)=CFF(x_B,t)$

$$\mathcal{H} = \int_{-1}^{+1} dx \frac{H(x,\xi,t)}{x-\xi+i\epsilon} = \mathcal{P} \int_{-1}^{+1} dx \frac{H(x,\xi,t)}{x-\xi} - i \pi H(x=\xi,\xi,t)$$

Generalized Parton Distributions

	Nucleon Helicity		
	conserving	non-conserving	
unpolarized GPD	Н	Ε	
polarized GPD	Ĥ	$ ilde{\mathrm{E}}$	

No relation for the GPD E and E

FOREVER

RPP 76(2013) 066202

Nucleon tomography R. Dupré et al. PRD95 (2017) Local fits from Hermes, CLAS & Hall A data Assume H contribution only Model dependent assumptions for x_B dependence

GPDs and hadronic physics issues

Contribution of the **angular momentum of quark** to the proton spin (Ji's sum rule: PRL 78(4):610-613, 1997)

 $\overline{2}$

$$= \underbrace{\frac{1}{2}\Delta\Sigma + L_q}_{J_q} + J_g \Rightarrow J_q = \frac{1}{2}\int_{-1}^{1} dx \, x[H^q(x,\xi,0) + E^q(x,\xi,0)]$$

$$\overset{\text{Spin of all Quarks}}{\underset{\text{Quarks}}{\text{Spin of Gluons}}} \overset{\text{Spin of all Quarks}}{\underset{\text{Gluons}}{\text{Spin of all Quarks}}} \overset{\text{Angular Momentum of Gluons}}{\underset{\text{of Gluons}}{\text{Angular Momentum of Gluons}}}$$

Access to the mechanical properties/gravitational form factors of the proton

$$\mathcal{H} = \int_{-1}^{+1} dx \frac{H(x,\xi,t)}{x-\xi+i\epsilon} = \mathcal{P} \int_{-1}^{+1} dx \frac{H(x,\xi,t)}{x-\xi} - i \pi H(x=\xi,\xi,t)$$
$$\mathbf{D}(\mathbf{t}) = -\mathbf{Re}(\mathcal{H}) + \int dx \frac{\mathbf{Im}\mathcal{H}}{\mathbf{x}+\xi}$$

JLab Exclusive reactions for GPDs program

Tables by C. Munoz-Camacho

Measureme	nt	Hall		
DVCS Polarized beam and/or target		A,B,C		
nDVCS	Deuterium/He3	B,C, A(Solid)		
DVCS w/ e+		B, C		
TCS		A (Solid), B, C		
Excl. π^0		A,B,C		
Excl. π ⁻		A (Solid), (B)		
Excl. φ, η		В		
L/T separation (K, π +)		С		
WACS (γ, π ⁰)		A, C		
Backwards π^0		С		

PacificSpin2024 (Nov 2024)

In the valence region (JLab 6 and JLab 12)

Partially complimentary, overlapping

- Hall A/C: Test the validity of the formalism
 - high accuracy (~5%)
 - limited kinematic
- Hall B: Map the GPDS
 - limited accuracy (15+%)
 - wide kinematic range

JLab Exclusive reactions for GPDs program

This talk focuses on recent **DVCS and DVMP-** π^o using the Hall A/C scheme and the future of this niche technique.

	Experiment	PAC	Goal	Results	
6 GeV	E00-110	PAC18	1 st dedicated DVCS experiment at JLab	<u>PRL97 (2006)</u> , <u>PRC83 (2011)</u> , <u>PRC92</u> (2015)	
	E03-106	PAC24	1 st neutron DVCS experiment	PRL99 (2007)	
	E07-007	PAC31	DVCS Rosenbluth-like separation (proton)	PRL117 (2016), Nature Commun. 8 (2017)	
	E08-025	PAC33	DVCS Rosenbluth-like separation (neutron)	PRL118 (2017), Nature Physics 16 (2020)	
12 GeV	E12-06-114	PAC30+38+41+47	1st 12 GeV experiment	PRL127 (2021), PRL128 (2022)	
	E12-13-010	PAC40	DVCS Rosenbluth-like separation (proton)	Scheduled 2023-2024	

Precision studies of the DVCS process at JLab

Julie Roche

- GPDs are accessible through many exclusive processes. So far, the most studied channels are Deeply Virtual Compton Scattering (DVCS) and Deep Virtual Meson production (DVMP).
- Our JLab Hall A/C collaboration measures DVCS and DVMP- π 0 absolute crosssection using a "simple" dedicated apparatus since 2006.
- Our precise (5%) measurements are essential to interpret the data.
- We just completed a new set of measurements in Hall C/JLab using a new PbWO₄ calorimeter and expanding our kinematic reach.

F. Georges,¹ M. N. H. Rashad,² A. Stefanko,³ M. Dlamini,⁴ B. Karki,⁴ S. F. Ali,⁵ P-J. Lin,¹ H-S Ko,^{1,6} N. Israel,⁴ D. Adikaram,⁷Z. Ahmed,⁸H. Albataineh,⁹B. Aljawrneh,¹⁰K. Allada,¹¹S. Allison,²S. Alsalmi,¹²D. Androic,¹³K. Aniol,¹⁴ J. Annand,¹⁵ H. Atac,¹⁶ T. Averett,¹⁷ C. Ayerbe Gayoso,¹⁷ X. Bai,¹⁸ J. Bane,¹⁹ S. Barcus,¹⁷ K. Bartlett,¹⁷ V. Bellini,²⁰ R. Beminiwattha,²¹ J. Bericic,⁷ D. Biswas,²² E. Brash,²³ D. Bulumulla,² J. Campbell,²⁴ A. Camsonne,⁷ M. Carmignotto,⁵ J. Castellano,²⁵ C. Chen,²² J-P. Chen,⁷ T. Chetry,⁴ M. E. Christy,²² E. Cisbani,²⁶ B. Clary,²⁷ E. Cohen,²⁸ N. Compton,⁴ J. C. Cornejo,^{17,3} S. Covrig Dusa,⁷ B. Crowe,²⁹ S. Danagoulian,¹⁰ T. Danley,⁴ F. De Persio,²⁶ W. Deconinck,¹⁷ M. Defurne,³⁰ C. Desnault,¹ D. Di,¹⁸ M. Duer,²⁸ B. Duran,¹⁶ R. Ent,⁷ C. Fanelli,¹¹ G. Franklin,³ E. Fuchey,²⁷ C. Gal,¹⁸ D. Gaskell,⁷ T. Gautam,²² O. Glamazdin,³¹ K. Gnanvo,¹⁸ V. M. Gray,¹⁷ C. Gu,¹⁸ T. Hague,¹² G. Hamad,⁴ D. Hamilton,¹⁵ K. Hamilton,¹⁵ O. Hansen,⁷ F. Hauenstein,² W. Henry,¹⁶ D. W. Higinbotham,⁷ T. Holmstrom,³² T. Horn,^{5,7} Y. Huang,¹⁸ G. M. Huber[®], ⁸C. E. Hyde[®], ²H. Ibrahim, ³³C-M. Jen, ³⁴K. Jin, ¹⁸M. Jones, ⁷A. Kabir, ¹²C. Keppel, ⁷V. Khachatryan, ^{7,35,36} P. M. King,⁴ S. Li,³⁷ W. B. Li,⁸ J. Liu,¹⁸ H. Liu,³⁸ A. Liyanage,²² J. Magee,¹⁷ S. Malace,⁷ J. Mammei,³⁹ P. Markowitz,²⁵ E. McClellan,⁷ M. Mazouz¹,⁴⁰ F. Meddi,²⁶ D. Meekins,⁷ K. Mesik,⁴¹ R. Michaels,⁷ A. Mkrtchyan,⁵ R. Montgomery,¹⁵ C. Muñoz Camacho,^{1,*} L. S. Myers,⁷ P. Nadel-Turonski,⁷ S. J. Nazeer,²² V. Nelyubin,¹⁸ D. Nguyen,¹⁸ N. Nuruzzaman,²² M. Nycz,¹² O. F. Obretch,²⁷ L. Ou,¹¹ C. Palatchi,¹⁸ B. Pandey,²² S. Park,³⁵ K. Park,² C. Peng,⁴² R. Pomatsalyuk,³¹ E. Pooser,⁷ A. J. R. Puckett,²⁷ V. Punjabi,⁴³ B. Quinn,³ S. Rahman,³⁹ P. E. Reimer,⁴⁴ J. Roche[®],⁴ I. Sapkota,⁵ A. Sarty,⁴⁵ B. Sawatzky,⁷ N. H. Saylor,⁴⁶ B. Schmookler,¹¹ M. H. Shabestari,⁴⁷ A. Shahinyan,⁴⁸ S. Sirca,⁴⁹ G. R. Smith,⁷ S. Sooriyaarachchilage,²² N. Sparveris,¹⁶ R. Spies,³⁹ T. Su,¹² A. Subedi,⁴⁷ V. Sulkosky,⁵⁰ A. Sun,³ L. Thorne,³ Y. Tian,⁵¹ N. Ton,¹⁸ F. Tortorici,²⁰ R. Trotta,⁵² G. M. Urciuoli,²⁶ E. Voutier,¹ B. Waidyawansa,⁷ Y. Wang,¹⁷ B. Wojtsekhowski,⁷ S. Wood,⁷ X. Yan,⁵³ L. Ye,⁴⁷ Z. Ye,¹⁸ C. Yero,²⁵ J. Zhang,¹⁸ Y. Zhao,³⁵ and P. Zhu⁵⁴

Students/Postdocs Spoke-persons

The Jefferson Lab Hall A/C technical staff The Jefferson Lab Accelerator staff

FOREVER

Dedicated apparatus e.g. the Hall A scheme

208 PbF2 blocks

FOREVER

OHIO

Exclusivity : the DVCS@Hall A scheme

Coincidence time $(e-\gamma)$

Precision studies of the DVCS process at JLab

Julie Roche

- GPDs are accessible through many exclusive processes. So far, the most studied channels are Deeply Virtual Compton Scattering (DVCS) and Deep Virtual Meson production (DVMP).
- Our JLab Hall A/C collaboration measures DVCS and DVMP- π 0 absolute crosssection using a "simple" dedicated apparatus since 2006.
- Our precise (5%) measurements are essential to interpret the data.
- We just completed a new set of measurements in Hall C/JLab using a new PbWO₄ calorimeter and expanding our kinematic reach.

Measuring DVCS to access GPDs information

DVCS in Hall A: 12 GeV result

F. Georges et al., *Phys.Rev.Lett.* 128 (2022) 25, 252002

How to parametrize the DVCS cross-sections?

$$\frac{d^{4}\sigma(\mathbf{lp} \rightarrow \mathbf{lp}\gamma)}{d\mathbf{x}_{B}d\mathbf{Q}^{2}d|\mathbf{t}|d\phi} = d\sigma^{BH} + d\sigma^{DVCS}_{unpol} + P_{1} \quad d\sigma^{DVCS}_{pol} + \mathbf{e}_{I} \left(\mathbf{Re}(\mathbf{I}) + P_{1}\mathbf{Im}(\mathbf{I})\right)$$

$$\frac{d\sigma^{BH}}{d\sigma^{DVCS}_{unpol}} \propto c_{0}^{BH} + c_{1}^{BH}\cos\phi + c_{2}^{BH}\cos 2\phi$$

$$\frac{d\sigma^{DVCS}_{unpol}}{d\sigma^{DVCS}_{pol}} \propto c_{0}^{DVCS} + c_{1}^{DVCS}\cos\phi + c_{2}^{DVCS}\cos 2\phi$$

$$\frac{d\sigma^{DVCS}_{pol}}{d\sigma^{D}} \propto s_{1}^{DVCS}\sin\phi$$

$$\operatorname{Re} I \propto c_{0}^{I} + c_{1}^{I}\cos\phi + c_{2}^{I}\cos 2\phi + c_{3}^{I}\cos 3\phi$$

$$\operatorname{Im} I \propto s_{1}^{I}\sin\phi + s_{2}^{I}\sin 2\phi$$

$$s_{1}^{I} = F_{1}\mathcal{H} + \xi(F_{1} + F_{2})\tilde{\mathcal{H}} + kF_{2}\mathcal{E}$$

World-wide GPDs analysis include more or less terms: both in terms of harmonics (c_i's and s_i's) and in term of GPD/CFFs.

1st Generation (2004)

Q² dependence study (of red terms)

2nd Generation (2010)

Beam energy dependence study at fixed x_{B} and Q^2

- Separate C_0^{DVCS} from C_0^{I}
- Separate HT and NLO from LT/LO coefficients

3rd Generation (2014-2016)

Multiple x_{B} and Q^2 measurements

- Experimental extraction of the CFFs as a function of x_B
- Importance of considering all CFFs when extracting CFFs

Results: off LH2 and LD2 (neutron) on DVCS and DVMP- π⁰

DVCS in Hall A@Jlab program

The average *t* values are -0.281 GeV² for [19] and -0.345, -0.702, -1.050 GeV² at *xB*=0.36, 0.48, 0.60, respectively for this work.

DVCS in Hall A: 12 GeV results

[This work] F. Georges, *Phys.Rev.Lett.* 128 (2022) 25, 252002
 Error bars: statistical
 Error boxes: systematic
 [19] M. Defurne et al., Phys. Rev. C92, 055202 (2015)
 [KM15] K. Kumericki and D. Mueller, *EPJ Web Conf.* 112 (2016) 01012

The precise measurement of cross-sections at the same x_B -Q² bin but multiple beam energies is essential for this extraction.

Also demonstrated in

M. Defurne et al., Nat. Commun. 8, 1408 (2017).

B. Kriesten et al., Phys. Rev. D 101, 054021 (2020).

M. Čuić et al., Phys. Rev. Lett. 125, 232005 (2020).

 $CFF_{\lambda\lambda'}$, λ : polarization state of virtual photon (0,+,-) $\lambda\Box$: polarization state of outgoing real photon (+,-)

Fit has 24 CFF

 $(\widetilde{H}, H \ \widetilde{E}, E) \otimes (\Re e, \Im m) \otimes (+ +, 0+, + -)$ but **only the results from the LO ones (++) are shown.** Fits performed at constant x_B and t over Q^2 and ϕ bins. No Q^2 evolution of the CFFs.

DVCS@Hall A neutron data

A combined neutron and proton targets data allows for flavor separation of the GPDs.

Neutron data are uniquely sensitive to the elusive GPD E (no connection to PDFs).

Below the two pions threshold: $D(e, e'\pi^0)X = d(e, e'\pi^0)d + n(e, e'\pi^0)n + p(e, e'\pi^0)p$.

DVCS2@Hall A neutron data

Flavor separation of Compton Form Factors

 $-d^3\sigma_d$ (exp) $-d^3\sigma_n$ (exp) -- BH_h -- BH, -VGG - Cano-Pire

Cross section measurements from E08-205

 $Q^2=1.9 \text{ GeV}^2$, $x_B=0.36$

Benali et al, Nature Phys. 16, 191 (2020)

L/T pion production separation: E07-007

M. Defurne et al. PRL 117, 26 (2015)

4 chiral-even GPDs4 chiral-odd GPDS (not seen in DVCS)

Leading twist , leading order factorization is only proven for $d\sigma_{\rm L}/dt$ (Collins et al. 1997)

$$\frac{d^{4}\sigma}{dtd\phi dQ^{2}dx_{B}} = \frac{1}{2\pi}\Gamma_{\gamma^{*}}(Q^{2}, x_{B}, E_{e})\left[\frac{d\sigma_{T}}{dt} + \epsilon\frac{d\sigma_{L}}{dt} + \sqrt{2\epsilon(1+\epsilon)}\frac{d\sigma_{TL}}{dt}\cos(\phi) + \epsilon\frac{d\sigma_{TT}}{dt}\cos(2\phi)\right]$$

Setting	E (GeV)	Q^2 (GeV ²)	х _В	ϵ
2010-Kin1	(3.355 ; 5.55)	1.5	0.36	(0.52; 0.84)
2010-Kin2	(4.455 ; 5.55)	1.75	0.36	(0.65; 0.79)
2010-Kin3	(4.455; 5.55)	2	0.36	(0.53; 0.72)

Dominance of $d\sigma_{\rm T}/dt\,$ observed (directly or not) also at

- Hermes & Hall C π^+
- Hall B, Hall A π^0

Factorization is only exact for longitudinal photons (Collins et al., 1997).

At large Q², QCD predicts that $\sigma_L \rightarrow Q^2 \sigma_T$

Effective transverse factorization schemes exploit and explain the observed $\sigma_T > \sigma_L$ for existing high x data.

S. Goloskokov and P. Kroll (Eur.Phys.J A47, 112(2011)) S. Liuti and G. Golstein (Phys.Rev.D79, 054014 (2009))

Twist 3 Distribution Amplitudes (DA) couple with transversity GPDs.

The dominant contribution is not the leading twist contribution

E07-007: π^0 fully separated contributions

Precision studies of the DVCS process at JLab

Julie Roche

- GPDs are accessible through many exclusive processes. So far, the most studied channels are Deeply Virtual Compton Scattering (DVCS) and Deep Virtual Meson production (DVMP).
- Our JLab Hall A/C collaboration measures DVCS and DVMP- π 0 absolute crosssection using a "simple" dedicated apparatus since 2006.
- Our precise (5%) measurements are essential to interpret the data.
- We just completed a new set of measurements in Hall C/JLab using a new PbWO₄ calorimeter and expanding our kinematic reach.

OHIO UNIVERSITY

Neutral Particle Spectrometer (Hall C/JLab)

LD2 target

HMS

FOREVER

E12-13-010 DVCS measurements follow up on measurements in Hall A:

- Scaling of the Compton Form Factor
- Rosenbluth-like separation of DVCS:
 - $\sigma = |BH|^{2} + \operatorname{Re}\left[DVCS^{\perp} BH\right] + |DVCS|^{2}$ ~ E_{beam}^{2}
- > L/T separation of π^0 production

- The NPS calorimeter consists of 1080 $PbWO_4$ crystals, the preferred material for high-resolution calorimetry, also at EIC NPS has the largest set of PbWO4 crystals in an operating calorimeter in the US
- The NPS Science Program consists of ten approved experiments. 4 experiments have been running in parallel from Sept '23 to May '24.

Neutral Particle Spectrometer (Hall C/JLab)

All channels perform well at very high luminosity on LH2 and LD2($\approx 8 \times 10^{37} \text{ cm}^2/\text{s}$). The expected resolution energy resolution was achieved (1.3% at 7.3 GeV).

Precision studies of the DVCS process at JLab

- Our JLab Hall A/C collaboration measures DVCS and DVMP- π^0 absolute crosssection using a "simple" dedicated apparatus since 2006.
- Our precise (5%) measurements are essential to interpret the data.
 - proton, neutron and exclusive pi-zero absolute cross section measurement
 - total and beam helicity correlated cross section measurement
 - cover the valence region (x_B =0.2 to 0.6) with Q² in the 1-10 GeV² range
 - repeated (x_B-Q²) measurement at different beam energies
- We just completed a new set of measurements in Hall C/JLab using a new PbWO₄ calorimeter and expanding our kinematic reach.

Thank you for your attention!

Thank you for your attention!

Toward a more complete description of the nucleon

 e^{-} $2(\xi - \xi')$

 $x-\xi$ x +**Quark GPDs** p

(TCS), DDVCS

DVCS/DVMP : same GPDs??

DA

Sensitivity to different GPDs (at leading order and twist)

The DVCS program worldwide

Experimental timeline

- Pioneering results from non-dedicated experiments (Hall B and Hermes): ~2001
- First round of dedicated experiments (Hall A/B, Hermes, H1&ZEUS): ~ 2005
- Second round of dedicated experiments (Halls A/B): ~2010
- Compelling DVCS program at JLab-12 GeV and Compass: 2015 and later
- EIC program...

In the valence region (JLab 6 and JLab 12)

Partially complimentary, overlapping

- Hall A/C: Test the validity of the formalism
 - high accuracy (~5%)
 - limited kinematic
- Hall B: Map the GPDS
 - limited accuracy (15+%)
 - wide kinematic range

DVCS Hall A@Jlab 1rst generation

PRC C92, Nov `15

FOREVER

PacificSpin2024 (Nov 2024)

Needs to be checked over a larger Q² bite

35 OHIO UNIVERSITY

Hall A E00-110: cross section Q² dependence

FOREVER

Hall A E00-110 cross sections: higher twist corrections

Higher twist corrections might be necessary to fully explain experimental data Confirmation of the significant deviation from BH => Need to measure T^2_{DVCS}

Hall A E07-007 (JLab 6 GeV)

Goal: To separate the BH.DVCS interference contribution from the DVCS² contribution. Nature Commun. 8 (2017) no.1, 1408

FOREVER

DVCS in Hall A: 12 GeV results

[This work] F. Georges, *Phys.Rev.Lett.* 128 (2022) 25, 252002

Error bars: statistical Error boxes: systematic

 $CFF_{\lambda\lambda'}$ λ : polarization state of virtual photon (0,+,-) λ : polarization state of outgoing real photon (+,-)

Fit has 24 CFF

 $(\widetilde{H}, H \ \widetilde{E}, E) \otimes (\Re e, \Im m) \otimes (+ +, 0+, + -)$ but **only the results from the LO ones (++) are shown.** Fits performed at constant x_B and t over Q^2 and ϕ bins. No Q^2 evolution of the CFFs.

[19] M. Defurne et al., Phys. Rev. C92, 055202 (2015) [KM15] K. Kumericki and D. Mueller, *EPJ Web Conf.* 112 (2016) 01012

The precise measurement of cross-sections at multiple values of center-of-mass energy (\sqrt{s}) but same Q² and it is essential for this extraction.

Also demonstrated in

M. Defurne et al., Nat. Commun. 8, 1408 (2017).

B. Kriesten et al., Phys. Rev. D 101, 054021 (2020).

M. Čuić et al., Phys. Rev. Lett. 125, 232005 (2020).

DVCS in Hall A: 12 GeV results

F. Georges, *Phys.Rev.Lett.* 128 (2022) 25, 252002

Results shown at $x_B = 0.60$ Fits performed at constant x_B and t over Q^2 and ϕ bins. No Q² evolution of the CFFs.

Fit has 24 CFF $(\widetilde{H}, H \ \widetilde{E}, E) \otimes (\Re e, \Im m) \otimes (+, 0+, +)$ but only the results from the LO ones (++) are shown.

Fit has only 8 CFF $(\widetilde{H}, H \ \widetilde{E}, E) \otimes (\Re e, \Im m) \otimes (++)$

> Fitting all CFFs is essential to get realistic estimates of their uncertainties.

π^0 DVCS2n results: fully separated contributions

FOREVER

OHIO

π^0 DVCS2n results: flavor separation

M. Mazouz PRL 118 (2017) 22, 222002

$$\left| \left\langle H_T^{p,n} \right\rangle \right|^2 = \frac{1}{2} \left| \frac{2}{3} \left\langle H_T^{u,d} \right\rangle + \frac{1}{3} \left\langle H_T^{d,u} \right\rangle \right|^2$$

$ep ightarrow ep \pi^0$ in Hall A : 12 GeV result

M. Dlamini et al, Phys. Rev. Lett 127, 152301

At sufficient high Q², meson production should be understandable in terms of the "handbag" diagram.

But the factorization is only exact for longitudinal virtual photons (Collins, Frankfurt, Strikman, 1997). Effective factorization of the transverse part exists.

Asymptotic QCD predicts that

$$\sigma_L \to Q^{-6}$$
, $\sigma_T \to Q^{-8}$ and $\frac{\sigma_T}{\sigma_L} \to \frac{1}{Q^2}$

 $d\sigma_U = d\sigma_T + \epsilon d\sigma_L$

42

$ep \rightarrow ep\pi^0$ in Hall A : 12 GeV result

FOREVER

OHIO

- σ_{TT} larger than σ_{TL} and $\sigma_{TL'}$: hint of dominance of the transverse amplitude as suggested by the GK model
- σ_{TL} and σ_{TL} underestimated by the GK model: larger contribution of the longitudinal amplitude than the one expected by GK

• sign difference between GK and σ_{TL} (Hall B & COMPASS results agree with GK) PacificSpin2024 (Nov 2024)

$ep \rightarrow ep\pi^0$ in Hall A : 12 GeV result

M. Dlamini et al, Phys. Rev. Lett 127, 152301

- This work, $x_B = 0.36$
- This work, $x_B = 0.48$
- This work, $x_B = 0.60$
- E. Fuchey *et al*, Phys. Rev. C 83, 025201 (2011)
- M. Defurne *et al*, Phys. Rev. Lett. 117, 262001 (2016)
- $\succ C(Q^2)^A \exp(-Bt') \text{ fit to experimental results of}$ $d\sigma_U \text{ in different } x_B \rightarrow \text{ solid curves}$ $x_B = 0.36 \rightarrow A = -3.3 \pm 0.1$ $x_B = 0.48 \rightarrow A = -2.9 \pm 0.1$ $x_B = 0.60 \rightarrow A = -3.1 \pm 0.1$
- \blacktriangleright Q² dependence closer to Q⁻⁶, rather than Q⁻⁸ as expected for σ_{T} at high Q²

$$\frac{d\sigma_u}{dt} = \frac{d\sigma_T}{dt} + \epsilon \frac{d\sigma_L}{dt}$$

х_в=0.36

 Q²=3.11 GeV² Q²=3.57 GeV²

Q²=4.44 GeV²

x_B=0.48 Q²=2.67 GeV²

Q²=4.06 GeV² Q²=5.16 GeV² Q²=6.56 GeV²

0.6

 $t' = t_{min} - t$

0.5

0.7

dashed lines: P. Kroll private communication

⁴⁶E12-13-010: precision DVCS/ π^0 cross sections

Simplest process: $e + p \rightarrow e' + p + \gamma$ (DVCS)

E12-13-010 DVCS measurements follow up on measurements in Hall A:

- Scaling of the Compton Form Factor
- Rosenbluth-like separation of DVCS: $\sigma = |BH|^2 + \operatorname{Re}[DVCS^{\perp} BH] + |DVCS|^2$
- \blacktriangleright L/T separation of π^0 production

Extracting the real part of CFFs from DVCS requires measuring the cross section at multiple beam energies (DVCS²–Interference separation)

Hall A data for Compton form factor (over *limited* Q² range) agree with hard-scattering

10

Q² (GeV²)

π^0 Exclusive Cross Sections

- Relative L/T contribution to π^0 cross section important in probing transversity
 - Results from Hall A at 6 GeV Jlab suggest that the longitudinal cross section in π^0 production is non-zero up to $Q^2=2 \text{ GeV}^2$ 12 GeV projections: confirm Q²/t dependence d₀∟₁/dt(,″) 10 c, (GK proi. 3.5 4.5 Q² (GeV²

E12-13-010 provides also data on σ_{T} and σ_1 at higher Q² for reliable interpretation of 12 GeV GPD data/

⁴⁷оню E12-22-006: DVCS off the Neutron

Probe flavor dependence of GPDs with precision nDVCS cross sections Measurement of the $N \rightarrow e' \gamma X$ reaction (N=p, n, d) using an LD₂ target in Hall C

With NPS and HMS in Hall C reach ~x2-12 better nDVCS & dDVCS separation than previous 6 GeV experiment

PacificSpin2024 (Nov 2024)

Projected Impact on flavor dependence of CFFs

- Simultaneous fit of E12-13-010 (p) and E12-22-006 (n)
- Real and imaginary parts of CFFs H and H
 and E (u & d)
 as free parameters (nDVCS not sensitive to E
)

