QCD sum rules for hadron spin decomposition

ref) PLB 843 (2023) 137986

collaborators:
Su Houng Lee
Sungtae Cho
Chihiro Sasaki
Philipp Gubler

Hyungjoo Kim

WPI-SKCM², Hiroshima University

@PacificSpin2024, Hefei, China, 2024.11.12

Spin-Rotation Coupling(SRC)

Q. SRC is valid for any spin? for any composite particle?

- => Spin decomposition of
 - Spin-1 quarkonium
 - Spin-1/2 proton (on-going)

Vector meson spin alignment

In non-central HICs,

=> Detailed mechanism is complex and still not clearly understood.

G.R. based derivations for SRC

Spin-1/2: Dirac eq. in a rotating frame using G.R.

$$\left[i\partial_x + gA(x) + \mathbf{\Sigma} \cdot \mathbf{\Omega} - m\right] \Psi(x) = 0 \text{ where } \mathbf{\Sigma} = \gamma^0 (\mathbf{S} + \mathbf{L})$$
$$=> \mathbf{H}_{SRC} = -\mathbf{S} \cdot \mathbf{\Omega} \text{ for spin-1/2}$$

- Spin-1: No strict derivation based on G.R. until recently
- *PRD102(2020)12,125028* J.Kapusta, E.Rrapaj, S.Rudaz
 - Proca eq. for massive spin-1 particle using G.R.

-
$$H_{SRC} = -\frac{1}{2}S \cdot \Omega$$
 for spin-1!

- contradictory to naive expectation and quark model
- Motivation

=> Clarify the strength of SRC for spin-1 particle in a different way!

Outline

- We study SRC of (the simplest) spin-1 heavy $Q\bar{Q}$ system
- Introduce a free parameter " g_{Ω} " which indicates the strength of SRC,

$$H_{SRC} = -g_{\Omega} S \cdot \Omega$$

"Total SRC = All reaction of quark + gluon in a rot frame"

- We prove that $g_{\Omega}=g_{\Omega}^{\rm quark}(Q^2)+g_{\Omega}^{\rm gluon}(Q^2)=1$ for spin-1 QQ system
- Each component of g_{Ω} carried by quarks and gluons = Spin content
- We study spin contents of J/ψ , $\Upsilon(1S)$ for V and χ_{c1} , χ_{b1} for AV

1. Describe the correlation function in a rotating frame

$$\Pi^{\mu\nu}(q) = i \int d^4x e^{iqx} \langle 0 | T\{j^{\mu}(x)j^{\nu}(0)\} | 0 \rangle$$

1. Describe the correlation function in a rotating frame

$$\Pi^{\mu\nu}(q) = i \int d^4x e^{iqx} \langle 0 | T\{j^{\mu}(x)j^{\nu}(0)\} | 0 \rangle$$

$$\epsilon_{\mu}^{+} = (0,1,i,0)/\sqrt{2}$$

2. Pick out a right circularly polarized state => $\Pi^{+}(\omega) = \epsilon_{\mu}^{+} \epsilon_{\nu}^{+*} \Pi^{\mu\nu}(\omega,0)$

Energy of $|11\rangle$ will be shifted by ' $-\Omega$ ' i.e. $\omega \to \omega - \Omega$

1. Describe the correlation function in a rotating frame

$$\Pi^{\mu\nu}(q) = i \int d^4x e^{iqx} \langle 0 | T\{j^{\mu}(x)j^{\nu}(0)\} | 0 \rangle$$

$$\epsilon_{\mu}^{+} = (0,1,i,0)/\sqrt{2}$$

- 2. Pick out a right circularly polarized state => $\Pi^{+}(\omega) = \epsilon_{\mu}^{+} \epsilon_{\nu}^{+*} \Pi^{\mu\nu}(\omega,0)$
- 3. Put the system at the center of the rotation => $q_{\mu} = (\omega, \vec{0})$

- No external OAM
- Expand Ω linear term

$$ds^{2} = g_{\mu\nu}x^{\mu}x^{\nu} = -dt^{2} + d\mathbf{r}^{2} = (-1 + (\mathbf{\Omega} \times \mathbf{r})^{2})dt^{2} + 2(\mathbf{\Omega} \times \mathbf{r})d\mathbf{r}dt + d\mathbf{r}^{2}$$

1. Describe the correlation function in a rotating frame

$$\Pi^{\mu\nu}(q) = i \int d^4x e^{iqx} \langle 0 | T\{j^{\mu}(x)j^{\nu}(0)\} | 0 \rangle$$

$$\epsilon_{\mu}^{+} = (0,1,i,0)/\sqrt{2}$$

- 2. Pick out a right circularly polarized state => $\Pi^{+}(\omega) = \epsilon_{\mu}^{+} \epsilon_{\nu}^{+*} \Pi^{\mu\nu}(\omega,0)$
- 3. Put the system at the center of the rotation => $q_{\mu}=(\omega,\vec{0})$
- 4. Up to linear terms in Ω

$$\Pi^{+}(\omega) = \omega^{2} \Pi^{vac}(\omega^{2}) + \omega \Pi^{rot}(\omega^{2}) \Omega + \mathcal{O}(\Omega^{2})$$

 Π^{vac} : ordinary vacuum invariant ftn. vacuum properties ex) mass

 Π^{rot} : new function appearing in a rotating frame. spin information

1. Describe the correlation function in a rotating frame

$$\Pi^{\mu\nu}(q) = i \int d^4x e^{iqx} \langle 0 | T\{j^{\mu}(x)j^{\nu}(0)\} | 0 \rangle$$

$$\epsilon_{\mu}^{+} = (0,1,i,0)/\sqrt{2}$$

- 2. Pick out a right circularly polarized state => $\Pi^+(\omega) = \epsilon_\mu^+ \epsilon_\nu^{+*} \Pi^{\mu\nu}(\omega,0)$
- 3. Put the system at the center of the rotation => $q_{\mu} = (\omega, \vec{0})$
- 4. Up to linear terms in Ω

$$\Pi^{+}(\omega) = \omega^{2} \Pi^{vac}(\omega^{2}) + \omega \Pi^{rot}(\omega^{2}) \Omega + \mathcal{O}(\Omega^{2})$$

 Π^{vac} : ordinary vacuum invariant ftn. vacuum properties ex) mass

 Π^{rot} : new function appearing in a rotating frame. spin information

- 5. Extract g_{Ω} by comparing two different descriptions of Π^{rot}
 - (a) Directly compute Feynman diagrams in a rotating frame
 - (b) Phenomenological derivation from Π^{vac}

Method (a) - direct computation in a rotating frame Feynman diagrams in Operator Product Expansion (OPE)

Leading perturbative diagram

• Leading non-perturbative diagrams : Gluon condensates $\langle (lpha_s/\pi)G^2
angle$

- Compute in an inertial frame $\to \Omega$ independent terms $\to \Pi^{vac}$
- Compute in a rotating frame \rightarrow collect Ω linear terms $\rightarrow \Pi^{rot}$

Quarks in a rotating frame

Recall Dirac eq. in a rotating frame

$$\left[i\partial_x + gA(x) + \mathbf{\Sigma} \cdot \mathbf{\Omega} - m\right] \Psi(x) = 0 \text{ where } \mathbf{\Sigma} = \gamma^0 (\mathbf{S} + \mathbf{L})$$

Quark propagator in a rotating frame

$$\left[i\partial_x + gA(x) + \mathbf{\Sigma} \cdot \mathbf{\Omega} - m\right] S(x) = \delta(x)$$

- It is difficult to find full propagator
- We can expand in terms of 'g' and ' Ω '

$$S^{\text{full}} \approx S^{(0)} + S^{(0)} \Big[g \mathcal{A} + \Sigma \cdot \Omega \Big] S^{(0)} + S^{(0)} \Big[g \mathcal{A} + \Sigma \cdot \Omega \Big] S^{(0)} \Big[g \mathcal{A} + \Sigma \cdot \Omega \Big] S^{(0)} + \cdots$$

$$= \frac{iS^{(0)}(x-y)}{g \hat{A}(z) + \Sigma \cdot \Omega} + \frac{iS^{(0)}(z-y)}{g \hat{A}(z_1) + \Sigma \cdot \Omega} + \frac{iS^{(0)}(z-z_1)}{g \hat{A}(z_2) + \Sigma \cdot \Omega} + \cdots$$

Gluons in a rotating frame

• Covariant derivatives in curved space-time(Γ^a_{bc} : Christoffel symbols)

$$D_c G_{ab} = \partial_c G_{ab} - \Gamma^d_{ca} G_{db} - \Gamma^d_{cb} G_{ad}$$

• Fock-Schwinger gauge($x^{\mu}A_{\mu}=0$) in curved space-time

$$\begin{split} A_{\mu}(x) &= -\frac{1}{2} x^{\nu} G_{\mu\nu} - \frac{1}{3} x^{\nu} x^{\alpha} \underline{\partial_{\alpha}} G_{\mu\nu} + \cdots \\ &= -\frac{1}{2} x^{\nu} G_{\mu\nu} - \frac{1}{3} x^{\nu} x^{\alpha} \underline{D_{\alpha}} G_{\mu\nu} - \frac{1}{3} x^{\nu} x^{\alpha} (\Gamma^{d}_{\alpha\mu} G_{d\nu} + \Gamma^{d}_{\alpha\nu} G_{\mu d}) + \cdots \end{split}$$

additional contribution in curved space-time

• $\Gamma_{01}^2 = \Omega$, $\Gamma_{02}^1 = -\Omega$ in a rotating frame.

$$\mathcal{A}_{\Omega}(x) = -\frac{1}{3} x^{\nu} x^{\alpha} \gamma^{\mu} (\Gamma^{d}_{\alpha\mu} G_{d\nu} + \Gamma^{d}_{\alpha\nu} G_{\mu d}) \propto \vec{x} \times (\vec{E} \times \vec{B}) \cdot \Omega = J_{g} \cdot \Omega$$

• Kapusta et al. thought that $D_cG_{ab}=\partial_cG_{ab}$ in a rotating frame. (Their result might be wrong)

Spin decomposition of method (a)

perturbative $\Pi^{vac} = \begin{array}{c} & & & & \\ & & &$

In a rot frame, we can compute $\Pi_{(a)}^{rot}$ using

$$S_{\text{quark}} \approx S^{(0)} + S^{(0)} \left[\underline{g} A_{\Omega} + \Sigma \cdot \Omega \right] S^{(0)} + \cdots$$

$$(S_{q} + L_{q} + J_{g}) \Omega$$

We can decompose the given diagrams into quark and gluon AM contributions depending on their origin => advantage of method(a)

Method (b) - Phenomenological derivation

In an inertial frame

$$\Pi^{+}(\omega) = \epsilon_{+}^{\mu^{*}} \epsilon_{+}^{\nu} \Pi_{\mu\nu}(\omega, 0) = \omega^{2} \Pi^{vac}(\omega^{2})$$

Energy shift of all right circularly polarized state in a rotating frame

$$=> \omega \to \omega - g_{\Omega} \Omega \qquad (\because H_{SRC} = -g_{\Omega} S \cdot \Omega)$$

$$\Pi^{+}(\omega + g_{\Omega}\Omega) = (\omega + g_{\Omega}\Omega)^{2} \Pi^{vac}((\omega + g_{\Omega}\Omega)^{2})$$

$$= \omega^{2} \Pi^{vac}(\omega^{2}) + \omega \Pi^{rot}(\omega^{2}) \Omega + \mathcal{O}(\Omega^{2})$$

Simple expression of rotating part in terms of vacuum invariant ftn.

$$\Pi_{(b)}^{rot}(\omega^2) = 2g_{\Omega} \left\{ \Pi^{vac}(\omega^2) + \omega^2 \frac{\partial \Pi^{vac}(\omega^2)}{\partial \omega^2} \right\}$$
unknown

=> We can directly derive Π^{rot} from Π^{vac} but it includes unknown g_{Ω}

g_{Ω} in perturbative region

description (a)

$$\Pi_{(a)}^{rot} = -------$$
quark spin + orbit

all responses of quarks in a rot frame = Sq + Lq

description (b)

$$\Pi_{(b)}^{rot} = 2g_{\Omega} \left\{ \Pi^{vac}(\omega^2) + \omega^2 \frac{\partial \Pi^{vac}(\omega^2)}{\partial \omega^2} \right\}$$

phen. derivation based on the energy shift of total system by "- $g_{\Omega}\Omega$ ".

 $g_{\Omega} = 1$ in the perturbative region

When two free quarks form a spin-1 state in a rel. way, they follow $H_{SRC} = - S \cdot \Omega$

c.f. Quark Model

$$H_r = m_{J/\psi} - \Omega$$

g_{Ω} in non-perturbative region

description (a)

$$\Pi_{(a)}^{rot} =$$
 quark + gluon

all responses of quarks and gluons = Sq + Lq + Jg

description (b)

$$\Pi_{(b)}^{rot} = 2g_{\Omega} \left\{ \Pi^{vac}(\omega^2) + \omega^2 \frac{\partial \Pi^{vac}(\omega^2)}{\partial \omega^2} \right\}$$

phen. derivation based on the energy shift of total system by " $-g_{\Omega}\Omega$ ".

 $g_{\Omega} = 1$ in the non-perturbative region

Even in non-pert region, spin-1 system follows $H_{SRC} = -S \cdot \Omega$

Physical meaning of $g_{\Omega} = 1$?

Method (b)

= SRC of the total system

=
$$g_{\Omega}\langle \vec{S} \rangle$$
 where \vec{S} is spin-1 operator where $\langle \cdots \rangle = \int d^4x e^{iq \cdot x} \langle 0 \, | \, T[j(x) \cdots j(0)] \, | \, 0 \rangle$

Method (a)

= Ω linear terms in all responses of quarks and gluon in a rotating frame

$$= \langle \vec{J}_{\rm QCD} \rangle \text{ where } \vec{J}_{\rm QCD} = \int d^3x (\frac{1}{2} \bar{\psi} \vec{\gamma} \gamma_5 \psi + \psi^\dagger (\vec{x} \times (-i\vec{D})) \psi + \vec{x} \times (\vec{E} \times \vec{B}))$$

Therefore, we can conclude that $g_{\Omega} = \langle \vec{J}_{\rm QCD} \rangle / \langle \vec{S} \rangle$

-
$$g_{\Omega}=1$$
 means $\langle \vec{S} \rangle = \langle \vec{J}_{\rm QCD} \rangle$

- This should be valid for any Feynman diagram (: AM conservation)

Application - g_{Ω} of ground states

From Kallen-Lehmann(or spectral) rep,

" $g_{\Omega} = 1$ " is universal for all physical states that can couple to $j^{\mu}(x)$.

If we can extract the ground state,

=> Fraction of g_{Ω} carried by each a.m. inside the ground state

$$\begin{split} g_{\Omega}^{\mathrm{ground}} &= \frac{\langle J_{\mathrm{QCD}} \rangle}{\langle S_{\mathrm{tot}} \rangle} = \frac{\langle S_q \rangle + \langle L_k \rangle + \langle L_p \rangle + \langle J_g \rangle}{\langle S_{\mathrm{tot}} \rangle} = 1 \\ S_q &= \frac{1}{2} \gamma^1 \gamma^2 : \mathrm{quark \; spin,} \end{split}$$

 $L_k = r \times p$: kinetic part of quark orbital a.m,

 $L_p = r \times gA$: potential part of quark orbital a.m,

 $J_{\varrho} = r \times (E \times B)$: gluon total a.m.

=> Spin content of the ground state

How to extract the ground state?

<QCD sum rules>

$$\Pi(q^2) = i \int d^4x e^{iqx} \langle T\{\phi(x)\phi(0)\}\rangle$$

$$Q^{2} = -q^{2} \gg 0$$

$$\Pi^{OPE}(Q^{2}) = \sum_{n} C_{n} \langle \mathcal{O}_{n} \rangle$$

$$\Pi^{\text{phen}}(q^2) = \frac{|\langle 0 | \phi | n_0 \rangle|^2}{q^2 - m_0^2} + \cdots$$

$$\Pi^{\text{OPE}}(Q^2) = \int_0^\infty ds \frac{\text{Im}\Pi^{\text{phen}}(s)}{s + Q^2}$$

$$\widehat{f}(M^2) \equiv \lim_{\substack{Q^2, n \to \infty \\ Q^2/n = M^2}} \frac{(Q^2)^{n+1}}{n!} \left(-\frac{d}{dQ^2} \right)^n f(Q^2) \qquad \qquad \text{Im}\Pi^{\text{phen}}(s) \approx \text{ground state pole} + \text{continuum}$$

$$\hat{\Pi}^{OPE}(M^2) = \int_0^\infty ds e^{-s/M^2} \operatorname{Im}\Pi^{\text{phen}}(s)$$

= spectral parameters are expressed as a ftn of Borel mass 'M' with QCD condensates. But, approximate relation. Reliable only inside a limited range of M20

QCDSR analysis: vector channel

$$g_{\Omega}^{\rm ground} = \frac{\langle J_{\rm QCD} \rangle}{\langle S_{\rm tot} \rangle} = \frac{\langle S_q \rangle + \langle L_k \rangle + \langle L_p \rangle + \langle J_g \rangle}{\langle S_{\rm tot} \rangle} = 1 \quad \text{as a ftn of M}$$

Take average over a reliable range of M

TABLE I: $\sqrt{\bar{s}_0}$ and Borel window for spin-1 quarkonia

	J/ψ	χ_{c1}	$\Upsilon(1S)$	χ_{b1}
$\sqrt{ar{s}_0} [{ m GeV}]$	3.5	4.0	10.3	11
(M_{\min}, M_{\max}) [GeV]	(1,2.3)	(1.4,2.3)	(3,5.5)	(3.6,4.9)

spin contents of spin-1 quarkonia

With the help of 'QCD sum rule' + simple 'pole+continuum' ansatz.

		Vector (%)			Axial (%)		
		S-wave	$\Upsilon(1S)$	J/ψ	P-wave	χ_{b1}	χ_{c1}
$ \begin{cases} spin \\ r \times p \end{cases} $	S_q	100	92	88	50	43	40
	L_k	0	7.6	11	50	57	61
$r \times gA$	L_p	0	0.003	0.2	0	-0.001	0.08
Gluon $r \times (E \times B)$	J_g	0	0.015	0.8	0	-0.005	-1.5

- Total sum of 4 pieces = 100 %
- Classical picture from the naive Q.M.
 S-wave: quark spin(100%), P-wave: quark spin(50%) quark oam(50%)
- Spin contents are slightly different from the classical picture. As the quark mass becomes lighter, spin contents deviate more from the classical picture ex) J/ψ is considered as S-wave but quarks do not carry all of the total spin $\Upsilon(1S)$ is still comparable with the classical picture

Light quark system?

vector mesons

	Q.M.	$\Upsilon(1S)$	J/ψ	ρ, ω, ϕ
S_q	100	92	88	?
L_k	0	7.6	11	?
L_p	0	0.003	0.2	?
J_g	0	0.015	0.8	?

nucleons

	Q.M.	p, n
S_q	100	?
L_k	0	?
L_p	0	?
J_g	0	?

Proton spin

Proton in an inertial frame

$$\Pi(q)=i\int\!d^4x e^{iqx}\langle T\{\eta(\mathbf{x})\bar{\eta}(0)\}\rangle$$
 massless limit : $m_{u,d}\to 0$ spin 1/2 nucleon current

Feynman diagrams (the most essential)

$$\langle \bar{q}q \rangle = -(240 \,\text{MeV})^3, \langle \frac{\alpha_s}{\pi} G^2 \rangle = (330 \,\text{MeV})^4$$

Intermediate result

- Roughly, at M~1 GeV, $\langle S_q \rangle : \langle L_q \rangle \approx 1:4$
- This naive analysis captures the important feature that Sq is small
- More accurate analysis requires more diagrams with finite quark masses.
- $\langle Jg \rangle$ is small and negative => α_s -corrections

Summary

- We proved that spin-1 composite systems follow $H_{SRC} = S \cdot \Omega$
- Inspired by SRC, we proposed a way to study hadron spin decomposition.
- Using QCD Sum Rules, we examined spin contents of spin-1 quarkonia and are currently working on the proton.