2024, November 9 PacificSpin2024, Hefei

This talk consists of two parts:

1. Evolution of the PacificSpin Symposium

2. Evolution of Studies of the Spin Structure of the Proton

Toshi-Aki Shibata Nihon University

1. Evolution of the PacificSpin Symposium

Circum-Pan-Pacific Symposium on High Energy Spin Physics

1st: 1996 in Kobe in Japan by Prof. Morii, 28 years ago EMC spin experiment, 1988, 1989 RHIC experiments in preparation

2nd: 1999

- 1st 1996 Kobe University,
- 2nd 1999 RIKEN,
- 3rd 2001 Peking University,
- 4th 2003 University of Washington,
- 5th 2005 Tokyo Tech,
- 6th 2007 Vancouver,
- 7th 2009 Yamagata University,
- 8th 2011 Cairns,
- 9th 2013 Shandong University,
- 10th 2015 Academia Sinica,
- 11th 2019 Miyazaki
- 12th 2024 Hefei

Toshiyuki Morii Koichi Yazaki Bo-Qiang Ma Xiang-Dong Ji Toshi-Aki Shibata Andy Miller Takahiro Iwata Anthony W. Thomas Zuo-Tang Liang Hai-Yang Cheng, Wen-Chen Chang Takahiro Iwata, Tatsuro Matsuda, Toshi-Aki Shibata Xiao-Rui Lyu, Qun Wang, Yang Li, Xinyang Wang • In this symposium, we consider that discussions among the participants are most important.

Talks (presentations) are inputs for these discussions.

• We also think it important to encourage young physicists to participate.

2024, November 9 PacificSpin2024, Hefei

Evolution of Studies of the Spin Structure of the Proton

Toshi-Aki Shibata Nihon University

1. Spinors — Spin 1/2 particles

Schrödinger equation, 1926

$$i\hbar \frac{\partial \psi}{\partial t} = \left[\frac{(p - eA)^2}{2m} + e\phi \right] \psi.$$
 scalar

Pauli equation, 1927, '100 years of spin physics'

$$i\hbar\frac{\partial\psi}{\partial t} = \left[\frac{1}{2m}(\sigma \cdot (p - eA))^2 + e\phi\right]\psi, \quad \psi = \begin{cases} \psi(r, t; \uparrow) \\ \psi(r, t; \downarrow) \end{cases}$$
(1)

Coefficients σ 's were introduced. spinors

$$\hat{H} = \frac{1}{2m}(\sigma \cdot (p - eA))^2 + e\phi.$$

$$i\hbar \frac{\partial \psi}{\partial t} = \left[\frac{1}{2m} (\sigma \cdot (p - eA))^2 + e\phi \right] \psi, \quad \psi = \begin{cases} \psi(r, t; \uparrow) \\ \psi(r, t; \downarrow) \end{cases}$$
(1)

$$i\hbar \frac{\partial \psi}{\partial t} = \left[\frac{(p - eA)^2}{2m} - \frac{e\hbar}{2m} \sigma \cdot B + e\phi \right].$$
 (2)

From Eq.(1) to Eq.(2), the coefficients $\sigma's$ have to satisfy the following conditions.

$$\sigma_i^2 = 1 \quad (i = 1, 2, 3), \qquad \sigma_i \sigma_j = i \varepsilon_{ijk} \sigma_k \quad (i \neq j)$$
$$(\sigma \cdot a)(\sigma \cdot b) = (a \cdot b) + i\sigma (a \times b),$$
$$a = b = p - e A$$

3/22

For example,

$$\sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

Dirac equation, 1928

$$(i\hbar \gamma^{\mu} \partial_{\mu} - m) \psi = 0$$
, free particle

With α_i and β matrices,

$$i\hbar \frac{\partial}{\partial t}\psi = \hat{H}\psi, \qquad \hat{H} = \sum_{i=1}^{3} \alpha_i \,\hat{p}_i + m\beta$$

This equation has to be consistent with Klein-Gordon equation which is based on $E^2 = p^2 + m^2$:

The conditions on the coefficients α_i , β are then

$$\alpha_i^2 = 1, \quad \beta^2 = 1, \tag{1}$$

 $\alpha_i \, \alpha_j + \alpha_j \, \alpha_i = 0 \quad (i \neq j), \qquad \alpha_i \, \beta + \beta \, \alpha_i = 0.$ (2)

- 1) Eq.2: α_i and β are not just numbers, but matrices.
- 2) Eq.1: The eigenvalues of the matrices α_i, β are +1 and -1.
- 3) Eqs.1 & 2: α_i and β are traceless. tr (α_i) =tr (β) = 0: the sum of the diagonal elements is 0.
- 4) Four independent matrices α_i , β are needed.
- \longrightarrow The size of matrices is 4x4, 6x6, or \ldots

The 2x2 matrix such as Pauli matrix has only three independent matrices, and does not satisfy the condition.

We adopt 4x4 matrices for α_i and β . The Hamiltonian becomes a 4x4 matrix. An example is

$$\hat{H} = \alpha \cdot \hat{p} + m\beta = \begin{bmatrix} m1 & \sigma \cdot \hat{p} \\ \sigma \cdot \hat{p} & -m1 \end{bmatrix}$$

Pauli-Dirac representation. σ is the Pauli matrix.

As a result, the wave function has four components. The plane wave is expressed as

$$\psi = \begin{bmatrix} u_1 \\ u_2 \\ u_3 \\ u_4 \end{bmatrix} e^{i(k \cdot x - \omega t)}, \quad u_A = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}, \ u_B = \begin{bmatrix} u_3 \\ u_4 \end{bmatrix}$$

spinors and space-time wave function

After operating $\hat{p}_i = \frac{\hbar}{i} \frac{\partial}{\partial x_i}$ and $\hat{E} = i\hbar \frac{\partial}{\partial t}$, $E \begin{bmatrix} u_1 \\ u_2 \\ u_3 \\ u_4 \end{bmatrix} = \begin{bmatrix} m1 & \sigma \cdot p \\ \sigma \cdot p & -m1 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ u_3 \\ u_4 \end{bmatrix}$.

The Hamiltonian can have four eigenvalues.

The eigenvalue-equation gives

$$E = E_+ = \sqrt{p^2 + m^2}, \qquad E = E_- = -\sqrt{p^2 + m^2}.$$

Two quantum states are degenerate at $E = E_+$, and also at $E = E_-$.

When
$$p = 0$$
, then $E = m$ and $E = -m$. When $E = m$,
 $u_A = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$ and $u_A = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ for example.

$$\begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$
 and $\begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}$.
When $E = -m$, $u_B = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $u_B = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ for example.

$$\begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}$$
 and $\begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$.

This is a new degree of quantum states: spin.

With the electromagnetic potentials (ϕ, A_x, A_y, A_z) , the operators $\hat{p} \rightarrow \hat{p} - qA$, $\hat{E} \rightarrow \hat{E} - q\phi$.

In the low energy limit, the Dirac equation is reduced to

$$T u_{A} = \left\{ \frac{(p - qA)^{2}}{2m} + q\phi - \frac{q\hbar}{2m}\sigma \cdot B \right\} u_{A}$$

- u_A : upper two components,
- T : kinetic energy, E = m + T.

$$\mu = \frac{q \hbar}{2m} \sigma = g \frac{q}{2m} \cdot \left(\frac{\hbar}{2}\sigma\right) = g \frac{q}{2m} s, \quad s = \frac{\hbar}{2} \sigma, \quad g = 2.$$

The $-\mu \cdot B$ term causes the energy split.

The Dirac equation describes the spinors — spin 1/2 particles.

$$J = L + rac{1}{2}\Sigma, \qquad \Sigma = \begin{pmatrix} \sigma & 0 \\ 0 & \sigma \end{pmatrix}.$$

 $[\Sigma, \hat{H}] \neq 0, \quad [L, \hat{H}] \neq 0, \quad [J, \hat{H}] = 0.$

2. Proton spin, spin sum rule

$$egin{aligned} &rac{1}{2} = rac{1}{2}\,\Delta\Sigma + L^{q,ar{q}} + \Delta G + L^G \ &\Delta\Sigma = \Delta u + \Deltaar{u} + \Delta d + \Delta d + \Deltaar{d} + \Delta s + \Deltaar{s} \ &\Delta u = \int_0^1 dx\,(u^\uparrow(x) - u^\downarrow(x)), ... \end{aligned}$$

Decomposition of the proton spin

$$\frac{1}{2} = \frac{1}{2} \Delta \Sigma + L^{q,\bar{q}} + (\text{Gluon})$$

the Jaffe-Manohar decomposition,

R. L. Jaffe and A. Manohar, Nucl. Phys. B 337 (1990) 509. the Ji decomposition, X. Ji, Phys. Rev. Lett. 78 (1997) 610. $2008 \sim X$. S. Chen et al., M. Wakamatsu,...

topics at PacificSpin2013 at Ji'nan.

- \cdot Gauge invariant decomposition into 4 terms
- \cdot The terms can be evaluated from the values of experimental observables.

$$\int \psi^{\dagger} \frac{1}{2} \Delta \Sigma \psi d^{3}x$$
$$+ \int \psi^{\dagger} x \times p \psi d^{3}x \longrightarrow \int \psi^{\dagger} x \times (p - g A) \psi d^{3}x$$
$$+ \text{Gluon terms}$$

Experiments:

EMC 1988, 1989, J. Ashman et al., Nucl. Phys. B328 (1989) 1. $\frac{1}{2}\Delta\Sigma$: contributions of spin of quarks and anti-quarks to the proton spin, $(12 \pm 9 \pm 14)\%$

EMC spectrometer

SLAC, SMC, HERMES, COMPASS etc.

Physics of Spin

 \longrightarrow Physics of Spin and Orbital Angular Momentum

Gluon spin — PHENIX, STAR etc.

Contributions of spins of quarks and anti-quarks to the proton spin: 25-35%

3. Transverse-momentum-dependent parton distributions

Sivers function

$$f_{q/p^{\uparrow}}(x,k_{T}) = f_{1}^{q}(x,k_{T}^{2}) - f_{1T}^{\perp q}(x,k_{T}^{2}) \frac{(\hat{P} \times k_{T}) \cdot S}{M}$$

A. Bacchetta et al., Phys. Rev. D70. 117504 (2004)

Single spin asymmetry in hadron reactions $p + p \rightarrow \pi^{\pm,0} + X$, The hard scale is determined by p_T .

DIS The hard scale is determined by Q^2 . p_T can be low. Sivers asymmetry:

A. Airapetian et al., HERMES, Phys. Rev. Lett. 94 012002 (2005). About 20 years ago.

HERMES, COMPASS, JLab, RHIC, SpinQuest etc.

18 / 22

4. Generalized parton distributions

Deeply virtual Compton scattering: $e + N \rightarrow e' + \gamma + N$, Hard exclusive meson production: $e + N \rightarrow e' + \text{meson} + N$.

 $H(x,\xi,t), E(x,\xi,t), \tilde{H}(x,\xi,t), \tilde{E}(x,\xi,t)$

$$J_{q,G} = \lim_{t \to 0} \int dx \, x \cdot \left[H^{q,G}(x,\xi,t) + E^{q,G}(x,\xi,t)
ight]$$

X.D. Ji, Phys. Rev. Lett. 78 610 (1997)

Interference between DVCS and Bethe-Heitler process

$$A_{LU}(\phi) = rac{d\sigma^{\uparrow} - d\sigma^{\downarrow}}{d\sigma^{\uparrow} + d\sigma^{\downarrow}} \propto {
m Im} \ (F \cdot H) \sin \phi$$

beam-spin asymmetry in DVCS.

A. Airapetian et al., HERMES, Phys. Rev. Lett. 87, 182001 (2001)

S. Stepanyan et al., CLAS, Phys. Rev. Lett. 87, 182002 (2001)

JLab, HERMES, COMPASS etc.

5. Summary

- \cdot Spin 1/2 particles are described as spinors. Pauli equation and Dirac equation
- · Proton spin spin sum rule,

The EMC result motivated further experiments of DIS and hadron reactions.

Contributions of spins of quarks and anti-quarks to the proton spin: 25-35% from DIS.

Gluon spin contribution measured by hadron reactions etc.

- Transverse-momentum dependent parton distributions Sivers function etc. since 20 years.
- · Generalized parton distributions Exclusive production of a photon or a meson
- \cdot EIC will provide further oppotunities to study the spin structure of the proton.