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1.　Evolution of the PacificSpin Symposium

Circum-Pan-Pacific Symposium on High Energy Spin Physics

1st: 1996 in Kobe in Japan by Prof. Morii, 28 years ago

EMC spin experiment, 1988, 1989

RHIC experiments in preparation

2nd: 1999
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• In this symposium, we consider that discussions among the

participants are most important.

Talks (presentations) are inputs for these discusssions.

• We also think it important to encourage young physicists to

participate.
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1. Spinors —— Spin 1/2 particles

Schrödinger equation, 1926

iℏ
∂ ψ

∂t
=

[
(p − e A)2

2m
+ e ϕ

]
ψ. scalar

Pauli equation, 1927, ‘100 years of spin physics’

iℏ
∂ ψ

∂t
=

[
1

2m
( σ · (p − e A))2 + e ϕ

]
ψ, ψ =

{
ψ(r , t ; ↑)
ψ(r , t ; ↓)

(1)

Coefficients σ′s were introduced. spinors

Ĥ =
1

2m
( σ · (p − e A))2 + e ϕ.
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iℏ
∂ ψ

∂t
=

[
1

2m
( σ · (p − e A))2 + e ϕ

]
ψ, ψ =

{
ψ(r , t ; ↑)
ψ(r , t ; ↓)

(1)

iℏ
∂ ψ

∂t
=

[
(p − e A)2

2m
− eℏ

2m
σ · B + e ϕ

]
. (2)

From Eq.(1) to Eq.(2),
the coefficients σ′s have to satisfy the following conditions.

σ2
i = 1 (i = 1, 2, 3), σi σj = i εijk σk (i ̸= j)

(σ · a)(σ · b) = (a · b) + iσ (a × b),

a = b = p − e A
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For example,

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.
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Dirac equation, 1928

(iℏ γµ ∂µ −m)ψ = 0, free particle

With αi and β matrices,

iℏ
∂

∂t
ψ = Ĥ ψ, Ĥ =

3∑
i=1

αi p̂i +mβ

This equation has to be consistent with Klein-Gordon equation
which is based on E 2 = p2 +m2:
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The conditions on the coefficients αi , β are then

α2
i = 1, β2 = 1, (1)

αi αj + αj αi = 0 (i ̸= j), αi β + β αi = 0. (2)

1) Eq.2: αi and β are not just numbers, but matrices.
2) Eq.1: The eigenvalues of the matrices αi , β are +1 and −1.
3) Eqs.1 & 2: αi and β are traceless. tr (αi)=tr (β) = 0:

the sum of the diagonal elements is 0.
4) Four independent matrices αi , β are needed.

−→ The size of matrices is 4x4, 6x6, or ....

The 2x2 matrix such as Pauli matrix has only three
independent matrices, and does not satisfy the condition.
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We adopt 4x4 matrices for αi and β. The Hamiltonian
becomes a 4x4 matrix. An example is

Ĥ = α · p̂ +mβ =

[
m 1 σ · p̂
σ · p̂ −m 1

]
Pauli-Dirac representation.
σ is the Pauli matrix.

As a result, the wave function has four components.

The plane wave is expressed as

ψ =


u1
u2
u3
u4

 e i (k·x−ωt), uA =

[
u1
u2

]
, uB =

[
u3
u4

]

spinors and space-time wave function
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After operating p̂i =
ℏ
i

∂

∂xi
and Ê = iℏ

∂

∂t
,

E


u1
u2
u3
u4

 =

[
m 1 σ · p
σ · p −m 1

]
u1
u2
u3
u4

 .
The Hamiltonian can have four eigenvalues.

The eigenvalue-equation gives

E = E+ =
√

p2 +m2, E = E− = −
√

p2 +m2.

Two quantum states are degenerate at E = E+, and also at
E = E−.
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When p = 0, then E = m and E = −m. When E = m,

uA =

[
1
0

]
and uA =

[
0
1

]
for example.

1
0
0
0

 and


0
1
0
0

 .
When E = −m, uB =

[
1
0

]
and uB =

[
0
1

]
for example.

0
0
1
0

 and


0
0
0
1

 .
This is a new degree of quantum states: spin.
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With the electromagnetic potentials (ϕ,Ax ,Ay ,Az),

the operators p̂ → p̂ − qA, Ê → Ê − qϕ.

In the low energy limit, the Dirac equation is reduced to

T uA =

{
(p − qA)2

2m
+ qϕ− qℏ

2m
σ · B

}
uA

uA : upper two components,
T : kinetic energy, E = m + T．

µ =
q ℏ
2m

σ = g
q

2m
·
(
ℏ
2
σ

)
= g

q

2m
s, s =

ℏ
2
σ, g = 2.

The −µ · B term causes the energy split.

The Dirac equation describes the spinors — spin 1/2 particles.
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J = L+
1

2
Σ, Σ =

(
σ 0
0 σ

)
.

[ Σ, Ĥ ] ̸= 0, [ L, Ĥ ] ̸= 0, [ J , Ĥ ] = 0.
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2. Proton spin, spin sum rule

1

2
=

1

2
∆Σ + Lq,q̄ +∆G + LG

∆Σ = ∆u +∆ū +∆d +∆d̄ +∆s +∆s̄

∆u =

∫ 1

0

dx (u↑(x)− u↓(x)), ...

Decomposition of the proton spin

1

2
=

1

2
∆Σ + Lq,q̄ + (Gluon)

the Jaffe-Manohar decomposition,
R. L. Jaffe and A. Manohar, Nucl. Phys. B 337 (1990) 509.

the Ji decomposition, X. Ji, Phys. Rev. Lett. 78 (1997) 610.
2008∼ X. S. Chen et al., M. Wakamatsu,...

topics at PacificSpin2013 at Ji’nan.
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· Gauge invariant decomposition into 4 terms
· The terms can be evaluated from the values of experimental

observables.∫
ψ† 1

2
∆Σψ d3x

+

∫
ψ† x × p ψ d3x −→

∫
ψ†x × (p − g A)ψ d3x

+ Gluon terms
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Experiments:

μ or e

P
xP

ｋ
ｋ’

q = ｋ – ｋ’*γ

22
2

2
qQ,

qP
Qx −=
⋅

=

..,, Kπ

Deep-inelastic Scattering

proton

EMC 1988, 1989,
J. Ashman et al., Nucl. Phys. B328 (1989) 1.
1

2
∆Σ: contributions of spin of quarks and anti-quarks to

the proton spin, (12± 9± 14)%
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EMC spectrometer

SLAC, SMC, HERMES, COMPASS etc.
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Physics of Spin

−→ Physics of Spin and Orbital Angular Momentum

d

d

g g

d

u
u d

u

u d

dg

Gluon spin — PHENIX, STAR etc.
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Contributions of spins of quarks and anti-quarks to the proton
spin: 25-35%

3. Transverse-momentum-dependent parton distributions

Sivers function

fq/p↑(x , kT ) = f q1 (x , k
2
T )− f ⊥q

1T (x , k2
T )

(P̂ × kT ) · S
M

A. Bacchetta et al., Phys. Rev. D70. 117504 (2004)
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Single spin asymmetry in hadron reactions
p + p → π±,0 + X , The hard scale is determined by pT .

DIS The hard scale is determined by Q2.
pT can be low. Sivers asymmetry:

4

N
↑(↓)
h (φ, φS) as the semi-inclusive luminosity-normalized

yield in that target spin state, the asymmetry is

Ah
UT (φ, φS) =

1

|ST |

(

N↑h(φ, φS)−N↓h(φ, φS)
)

(

N↑h(φ, φS) +N↓h(φ, φS)
) , (1)

The Collins azimuthal moment 〈 sin(φ + φS)〉
h

UT
and

Sivers moment 〈 sin(φ − φS)〉
h

UT
of the virtual-photon

asymmetry are extracted in the fit

Ah
UT (φ, φS)

2
= 〈 sin(φ+ φS)〉

h

UT

B(〈y〉)

A(〈x〉, 〈y〉)
sin(φ+ φS)

+ 〈 sin(φ− φS)〉
h

UT
sin(φ− φS) . (2)

Here B(y) ≡ (1 − y), A(x, y) ≡ y2

2 + (1 − y)(1 +
R(x, y))/(1+γ(x, y)2), R(x, y) is the ratio of longitudinal
to transverse DIS cross sections, γ(x, y)2 ≡ 2Mpx/(Ey).
The values for R(〈x〉, 〈y〉) [34] cannot be neglected here
as they fall in the range 0.1–0.34. The reduced-χ2 val-
ues for the fits are in the range 0.74–1.89. The statisti-
cal correlations between the Sivers and Collins moments
fall in the range -0.5 to -0.6. The addition of terms for
sin(3φ − φS), sinφS and sin(2φ − φS) resulted in coeffi-
cients that are negligible compared to their uncertainties,
and in negligible changes to the Collins and Sivers mo-
ments. Effects of acceptance, instrumental smearing and
QED radiation were all found to be negligible in Monte
Carlo simulations [35]. The largest contribution to the
systematic uncertainties is due to the target polarization.
When the azimuthal moments are averaged over the

experimental acceptance, the selected ranges in x and z
are 0.023 < x < 0.4 and 0.2 < z < 0.7, and the corre-
sponding mean values of the kinematic parameters are
〈x〉 = 0.09, 〈y〉 = 0.54, 〈Q2〉 = 2.41GeV2, 〈z〉 = 0.36 and
〈Pπ⊥〉 = 0.41GeV. The dependences of the charged pion
moments on x and z are shown in Fig. 2. Also shown
are simulations based on Pythia6 [36], tuned for Her-

mes kinematics, of the fractions of the semi-inclusive
pion yield from exclusive production of vector mesons,
the asymmetries of which are poorly determined.
The averaged Collins moment for π+ is positive at

0.021 ± 0.007(stat), while it is negative at −0.038 ±
0.008(stat) for π−. Such a difference is expected if the
transversity densities resemble the helicity densities to
the extent that δu is positive and δd is negative and
smaller in magnitude, as models predict [37]. However,
the magnitude of the negative π− moment appears to
be at least as large as that for π+. The left panel shows
that this trend becomes more apparent as the magnitudes
of these transverse moments increase at larger x where
valence quarks tend to dominate, as did the previously
measured longitudinal asymmetries. However, the large
negative π− moments might be considered unexpected
as neither quark flavor dominates π− production like the
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FIG. 2: Virtual-photon Collins (Sivers) moments for charged
pions as labelled in the upper (middle) panel, as a function of
x and z, multiplied by two to have the possible range ±1. The
error bars represent the statistical uncertainties. In addition,
there is a common 8% scale uncertainty in the moments. The
lower panel shows the relative contributions to the data from
simulated exclusive vector meson production.

up quark dominates π+, and one expects |δd| < |δu| in
analogy with |∆d| < |∆u|. This expectation is reflected
in model predictions [13, 14] based on the interpretation
of those longitudinal asymmetries. This failure of those
predictions could be due to the neglect of T-odd distri-
butions such as the Sivers function, the contribution of
sea quarks or disfavored Collins fragmentation.

One explanation of the larger negative π− azimuthal
moments could be a substantial magnitude with opposite
sign for the disfavored Collins function describing e.g. the
fragmentation of up quarks to π− mesons. Opposite signs
of the favored and disfavored Collins functions might be
understood in the light of the string model of fragmen-
tation. If a favored pion forms as the string end created

4

N
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h (φ, φS) as the semi-inclusive luminosity-normalized

yield in that target spin state, the asymmetry is
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UT (φ, φS) =
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)
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UT
and
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UT
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UT
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the asymmetries of which are poorly determined.
The averaged Collins moment for π+ is positive at

0.021 ± 0.007(stat), while it is negative at −0.038 ±
0.008(stat) for π−. Such a difference is expected if the
transversity densities resemble the helicity densities to
the extent that δu is positive and δd is negative and
smaller in magnitude, as models predict [37]. However,
the magnitude of the negative π− moment appears to
be at least as large as that for π+. The left panel shows
that this trend becomes more apparent as the magnitudes
of these transverse moments increase at larger x where
valence quarks tend to dominate, as did the previously
measured longitudinal asymmetries. However, the large
negative π− moments might be considered unexpected
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FIG. 2: Virtual-photon Collins (Sivers) moments for charged
pions as labelled in the upper (middle) panel, as a function of
x and z, multiplied by two to have the possible range ±1. The
error bars represent the statistical uncertainties. In addition,
there is a common 8% scale uncertainty in the moments. The
lower panel shows the relative contributions to the data from
simulated exclusive vector meson production.

up quark dominates π+, and one expects |δd| < |δu| in
analogy with |∆d| < |∆u|. This expectation is reflected
in model predictions [13, 14] based on the interpretation
of those longitudinal asymmetries. This failure of those
predictions could be due to the neglect of T-odd distri-
butions such as the Sivers function, the contribution of
sea quarks or disfavored Collins fragmentation.

One explanation of the larger negative π− azimuthal
moments could be a substantial magnitude with opposite
sign for the disfavored Collins function describing e.g. the
fragmentation of up quarks to π− mesons. Opposite signs
of the favored and disfavored Collins functions might be
understood in the light of the string model of fragmen-
tation. If a favored pion forms as the string end created

A. Airapetian et al., HERMES, Phys. Rev. Lett. 94 012002 (2005).
About 20 years ago.

HERMES, COMPASS, JLab, RHIC, SpinQuest etc. 18 / 22



4. Generalized parton distributions

Deeply virtual Compton scattering: e + N → e ′ + γ + N ,
Hard exclusive meson production: e +N → e ′ +meson + N .

H(x , ξ, t), E (x , ξ, t), H̃(x , ξ, t), Ẽ (x , ξ, t)

Jq,G = lim
t→0

∫
dx x ·

[
Hq,G (x , ξ, t) + E q,G (x , ξ, t)

]
X.D. Ji, Phys. Rev. Lett. 78 610 (1997)
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Interference between DVCS and Bethe-Heitler process

The internal structure of the nucleon has been exten-
sively studied in deep-inelastic lepton scattering, result-
ing in such measurements as the momentum distributions
of quarks and their helicity dependences. The contribu-
tion of the quark spins to the nucleon spin was found to
be small. Recently a possibility was identified to study
experimentally the total contributions of partons to the
nucleon spin, including their orbital angular momenta [1].
This idea is based on the formalism of the so-called
skewed parton distributions (SPD) (also referred to as
off-forward or generalized parton distributions in the lit-
erature [2–5]). In this formalism dynamical correlations
between partons with different momenta are taken into
account. The SPD framework embodies a wide range of
observables, such as electromagnetic form factors, con-
ventional parton distributions and hard exclusive cross
sections. In particular, sum rules [5–7] relate second mo-
ments of certain SPDs with the total angular momenta
of the quarks and of the gluons in the nucleon.
A reaction that can be cleanly interpreted in terms

of SPDs is deeply-virtual Compton scattering (DVCS),
i.e. the exclusive leptoproduction of a single multi-GeV
photon with the target nucleon remaining intact. Un-
fortunately, experimental information on DVCS is scant.
A central issue is that it is impossible to distinguish be-
tween photons originating from DVCS and those from the
Bethe-Heitler (BH) process, which can be much more co-
pious. The corresponding diagrams are shown in Fig. 1.
However, the interference between the DVCS and BH
processes can be exploited in order to obtain information
on DVCS amplitudes. For that purpose the HERMES
collaboration has measured the beam-spin asymmetry in
hard exclusive electroproduction of photons. The data
obtained are presented in this paper.
Using the notation of Ref. [8], the cross section for

exclusive leptoproduction of photons can be written as

d4σ

dφdtdQ2dx
=

xy2

32 (2π)
4
Q4

|τBH + τDVCS|
2

(1 + 4x2m2/Q2)1/2
, (1)

where x represents the Bjorken scaling variable, y = ν/E
the fraction of the incident lepton energyE carried by the
virtual photon, ν its energy and −Q2 its four-momentum
squared, m the proton mass, and τBH and τDVCS are the
BH and DVCS amplitudes. The cross section shown is
differential in x, Q2, φ and t, where the azimuthal angle
φ is the angle between the lepton scattering plane and
the plane defined by the virtual and real photons, and t
represents the square of the four-momentum transfer to
the target.
In Ref. [8] expressions are given for the DVCS+BH

cross sections in leading order O(1/Q). (An alternative
approach can be found in Ref. [9], for instance.) The
leading-order interference term that depends on the he-
licity of the incident lepton is

(b)(a)

FIG. 1. (a) Feynman diagram for deeply-virtual Compton
scattering, and (b) photon radiation from the incident and
scattered lepton in the Bethe-Heitler process.

(τ∗BHτDVCS + τ∗DVCSτBH)pol =
4
√
2 me6

tQx
·

1
√
1− x

×elPl

[

− sinφ ·

√

1 + ǫ

ǫ
ImM̃1,1

]

. (2)

The quantity M̃1,1 is the linear combination of DVCS
helicity amplitudes that contributes in the case of a po-
larized beam and an unpolarized target. The interference
is seen to depend on the azimuthal angle φ, the sign of
the lepton charge el , and the polarization Pl of the in-
cident lepton. The kinematic quantity ǫ is the polariza-
tion parameter of the virtual photon. A determination
of the sinφ-moment of the asymmetry of the interference
term shown in Eq. (2) with respect to the beam polariza-
tion provides information on the imaginary part of the
DVCS amplitude combination M̃1,1, which is related to
the SPDs [8]. Not shown in Eq. (2) are other interference
terms that are suppressed by O(1/Q), but they involve
other φ-moments.
The data presented here were recorded during the

1996 and 1997 running periods of the HERMES experi-
ment using the 27.6 GeV HERA longitudinally polarized
positron beam at DESY [10]. The beam polarization was
continuously measured by Compton back scattering and
had an average value of 0.55 with a fractional uncertainty
of 3.8% [11,12]. The positrons were scattered off a hydro-
gen gas target [13]. Both unpolarized and spin-averaged
polarized-target data have been used in the analysis.
The scattered positrons and coincident photons were

detected by the HERMES spectrometer [14] in the polar-
angle range of 40 to 220 mrad. A positron trigger was
formed from a coincidence between three scintillator ho-
doscope planes and a lead-glass calorimeter. The trigger
required an energy of more than 3.5 GeV deposited in the
calorimeter. Charged particle identification was based on
information from four detectors: a threshold Čerenkov
counter, a transition radiation detector, a preshower scin-
tillator counter and a lead-glass calorimeter. The particle
identification provides an average positron identification
efficiency of 99% with a hadron contamination of less
than 1%. Photons are identified by the detection of en-
ergy deposition in the calorimeter and preshower counter
without an associated charged track.

3

ALU(ϕ) =
dσ↑ − dσ↓

dσ↑ + dσ↓ ∝ Im (F · H) sinϕ
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beam-spin asymmetry in DVCS.

A. Airapetian et al., HERMES, Phys. Rev. Lett. 87, 182001 (2001)

S. Stepanyan et al., CLAS, Phys. Rev. Lett. 87, 182002 (2001)

JLab, HERMES, COMPASS etc.
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5. Summary

· Spin 1/2 particles are described as spinors.
Pauli equation and Dirac equation

· Proton spin – spin sum rule,
The EMC result motivated further experiments of DIS and
hadron reactions.
Contributions of spins of quarks and anti-quarks to
the proton spin: 25-35% from DIS.
Gluon spin contribution measured by hadron reactions etc.

· Transverse-momentum dependent parton distributions
Sivers function etc. since 20 years.

· Generalized parton distributions
Exclusive production of a photon or a meson

· EIC will provide further oppotunities to study the spin
structure of the proton.
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