Global analysis of Sivers and Collins asymmetries within TMD factorization

Chunhua Zeng

Introduction

Theoretical formalism

TMD Factorization for SIDIS, DY and SIA

Choice of unpolarized TMD

parametric form

Data selection

Extraction c TMD

SUMMERY

Global analysis of Sivers and Collins asymmetries within TMD factorization

Chunhua Zeng

Institute of Modern Physics

November 11, 2024

Collaborators: Hongxin Dong, Tianbo Liu, peng Sun, Yuxiang Zhao

1 / 27

э

イロト イボト イヨト イヨト

Contents

Global analysis of Sivers and Collins asymmetries within TMD factorization

Chunhua Zeng

Introduction

Theoretical formalism

TMD Factorization for SIDIS, DY and SIA

Choice of unpolarized TMD

parametric form

Data selection

Extraction o

SUMMERY

Introduction

Theoretical formalism

- TMD Factorization for SIDIS, DY and SIA
- Choice of unpolarized TMD
- parametric form

Data selection

Extraction of TMD

Global analysis of Sivers and Collins asymmetries within TMD factorization

Chunhua Zeng

Introduction

Theoretical formalism

TMD Factorization for SIDIS, DY and SIA

Choice of unpolarized TMD

parametric form

Data selection

Extraction o TMD

- The three-dimensional structure of the nucleon can be described by TMD PDFs.
- In leading twist, there are eight TMD PDFs.

Global analysis of Sivers and Collins asymmetries within TMD factorization

Chunhua Zeng

Introduction

Theoretical formalism

TMD Factorization for SIDIS, DY and SIA

Choice of unpolarized TMD

parametric form

Data selection

Extraction o TMD

SUMMERY

- The three-dimensional structure of the nucleon can be described by TMD PDFs.
- In leading twist, there are eight TMD PDFs.

f[⊥]_{1*T*}(Sivers): Describes an unpolarized quark inside a transversely polarized hadron.

Global analysis of Sivers and Collins asymmetries within TMD factorization

Chunhua Zeng

Introduction

Theoretical formalism

TMD Factorization for SIDIS, DY and SIA

Choice of unpolarized TMD

parametric form

Data selection

Extraction o TMD

- The three-dimensional structure of the nucleon can be described by TMD PDFs.
- In leading twist, there are eight TMD PDFs.

- $f_{1T}^{\perp}(\text{Sivers})$: Describes an unpolarized quark inside a transversely polarized hadron.
- h₁(Transversity): Describes a transversely polarized quark inside a transversely polarized hadron.

Global analysis of Sivers and Collins asymmetries within TMD factorization

Chunhua Zeng

Introduction

Theoretical formalism

TMD Factorization for SIDIS, DY and SIA

Choice of unpolarized TMD

parametric form

Data selection

Extraction c TMD

SUMMERY

TMDs can be studied experimentally through SIDIS, SIA, and DY processes.

Global analysis of Sivers and Collins asymmetries within TMD factorization

Chunhua Zeng

Introduction

Theoretical formalism

TMD Factorization for SIDIS, DY and SIA

Choice of unpolarized TMD

parametric form

Data selection

Extraction TMD

SUMMERY

TMDs can be studied experimentally through SIDIS, SIA, and DY processes.

$$A_{UT,T}^{\sin(\phi_h-\phi_s)} \propto f_{1T}^{\perp} \otimes D_1$$

 $A_{UT}^{\sin(\phi_h+\phi_s)} \propto h_1 \otimes H_1^{\perp}$

Global analysis of Sivers and Collins asymmetries within TMD factorization

Chunhua Zeng

Introduction

Theoretical formalism

TMD Factorization for SIDIS, DY and SIA

Choice of unpolarized TMD

parametric form

Data selection

Extraction TMD

SUMMERY

TMDs can be studied experimentally through SIDIS, SIA, and DY processes.

$$A_{UT,T}^{\sin(\phi_h-\phi_s)} \propto f_{1T}^{\perp} \otimes D_2$$

 $A_0^{UL} \propto H_1^\perp \otimes H_1^\perp$

 $A_{UT}^{\sin(\phi_h+\phi_s)} \propto h_1 \otimes H_1^{\perp}$

Global analysis of Sivers and Collins asymmetries within TMD factorization

Chunhua Zeng

Introduction

Theoretical formalism

TMD Factorization for SIDIS, DY and SIA

Choice of unpolarized TMD

parametric form

Data selection

Extraction TMD

SUMMERY

TMDs can be studied experimentally through SIDIS, SIA, and DY processes.

n e H_2 ep e^+ Parton Distribution $q_T \ll Q$ HH Fragmentation DY SIDIS SIA $A_{IIT}^{\sin(\phi_h - \phi_s)} \propto f_{1T}^{\perp} \otimes D_1$ $A_0^{UL} \propto H_1^{\perp} \otimes H_1^{\perp}$ $A_{IIT}^{\sin\phi} \propto f_1^{\perp} \otimes f_1$ $A_{i,\tau}^{\sin(\phi_h+\phi_s)} \propto h_1 \otimes H_1^{\perp}$

> <ロト < 団 > < 巨 > < 巨 > 三 の Q () 4/27

Contents

Global analysis of Sivers and Collins asymmetries within TMD factorization

Chunhua Zeng

Introduction

Theoretical formalism

TMD Factorization for SIDIS, DY and SIA

Choice of unpolarized TMD

parametric form

Data selection

Extraction c TMD

SUMMERY

Introduction

2 Theoretical formalism

- TMD Factorization for SIDIS, DY and SIA
- Choice of unpolarized TMD
- parametric form

Data selection

Extraction of TMD

SIDIS: $l(l) + p(P) \rightarrow l(l') + h(P_h) + X$

Global analysis of Sivers and Collins asymmetries within TMD factorization

Chunhua Zeng

6

Introduction

Theoretical formalism

TMD Factorization for SIDIS, DY and SIA

Choice of unpolarized TMD

parametric form

Data selection

Extraction TMD

SUMMERY

The SIDIS cross section can be written as

$$\begin{aligned} \frac{d\sigma}{dxdydzd\phi_h d\phi_s dP_{h\perp}^2} &= \frac{\alpha_{em}^2}{xyQ^2} (1 - y + \frac{1}{2}y^2) \{F_{UU,T} + S_T[\sin(\phi_h - \phi_s)F_{UT,T}^{\sin(\phi_h - \phi_s)} + \varepsilon \sin(\phi_h + \phi_s)F_{UT}^{\sin(\phi_h + \phi_s)}] + ... \}, \end{aligned}$$

The Sivers and Collins asymmetries for SIDIS process are

The SIDIS process in $\gamma^* p$ center of

mass frame.

- f_{1T}^{\perp} : Sivers function
- h_1 : Transversity function
- H_1^{\perp} : Collins function

6/27

$\mathsf{DY}: h_1(P_1, S_1) + h_2(P_2, S_2) \to \gamma^* \to l^+ l^-$

Global analysis of Sivers and Collins asymmetries within TMD factorization

Chunhua Zeng

Introduction

Theoretical formalism

TMD Factorization for SIDIS, DY and SIA

Choice of unpolarized TMD

parametric form

Data selection

Extraction c TMD

SUMMERY

The DY cross section can be written as

$$\frac{d\sigma}{d^4qd\Omega} = \frac{\alpha_{em}^2}{\mathscr{F}Q^2} \{ (1+\cos^2\theta)F_{UU}^1 + S_T(1-\cos^2\theta)\sin\phi_s F_{UT}^{\sin\phi_s} + ... \},$$

The Sivers transverse-spin-dependent asymmetries for DY process are

The DY process in the Collins-Soper frame .

$$A_{UT}^{\sin\phi_s} = \frac{F_{UT}^{\sin\phi_s}}{F_{UU}^1} = \frac{\hat{\sigma}_{q\bar{q}\to\bar{l}\bar{l}} \otimes f_1^\perp \otimes f_1}{\hat{\sigma}_{q\bar{q}\to\bar{l}\bar{l}} \otimes f_1 \otimes f_1}$$

SIA:
$$e^+(P_{e^+}) + e^-(P_{e^-}) \to h_1(P_{h_1}) + h_2(P_{h_2}) + X$$

Global analysis of Sivers and Collins asymmetries within TMD factorization

Chunhua Zeng

Introduction

Theoretical formalism

TMD Factorization for SIDIS, DY and SIA

Choice of unpolarized TMD

parametric form

Data selection

Extraction o TMD

SUMMERY

In the limit of small transverse momentum $P_{h\perp},$ the cross section as predicted by TMD factorization reads

 $\frac{d^{5}\sigma}{dz_{h1}dz_{h2}d^{2}P_{h\perp}d\cos\theta} = \frac{N_{c}\pi\alpha_{em}^{2}}{2Q^{2}}z_{h1}^{2}z_{h2}^{2}\Big[(1+\cos^{2}\theta)F_{UU}+\sin^{2}\theta\cos(2\phi_{0})F_{UU}^{\cos2\phi_{0}}\Big].$

The collins asymmetries for SIA process are

The SIA process in the frame of z axis along one of the detected hadrons.

$$A_0^{UL} \propto \frac{F_{UU}^{\cos 2\phi_0}}{F_{UU}} = \frac{\hat{\sigma}_{e\bar{e} \to q\bar{q}} \otimes H_1^{\perp} \otimes H_1^{\perp}}{\hat{\sigma}_{e\bar{e} \to q\bar{q}} \otimes D_1 \otimes D_1}$$

・ロト ・御 ト ・ ヨト ・ ヨト … ヨ

• H_1^{\perp} : Collins function

8/27

Choice of unpolarized TMD

Global analysis of Sivers and Collins asymmetries within TMD factorization

Chunhua Zeng

Introduction

Theoretical formalism

TMD Factorization for SIDIS, DY and SIA

Choice of unpolarized TMD

parametric form

Data selection

Extraction (TMD

SUMMERY

At small value of b, the TMD distribution could be related to collinear distributions

$$\begin{split} f_{1,f\leftarrow h}(x,b;Q,Q^2) &= \sum_{f'} \int_x^1 \frac{dy}{y} C_{f\leftarrow f'}(y,b,\mu_{\rm OPE}^{\rm PDF}) \\ &\times f_{1,f'\leftarrow h}\Big(\frac{x}{y},\mu_{\rm OPE}^{\rm PDF}\Big) f_{\rm NP}(x,b) R(Q,b), \\ D_{1,f\rightarrow h}(z,b;Q,Q^2) &= \frac{1}{z^2} \sum_{f'} \int_z^1 \frac{dy}{y} y^2 \mathbb{C}_{f\rightarrow f'}(y,b,\mu_{\rm OPE}^{\rm FF}) \\ &\times d_{1,f'\rightarrow h}\Big(\frac{z}{y},\mu_{\rm OPE}^{\rm FF}\Big) D_{\rm NP}(z,b) R(Q,b). \end{split}$$

 $f_{\rm NP}(x,b)$, $D_{\rm NP}(z,b)$ and the non-perturbative parts of the evolution factor R(Q,b) are obtained from the fitting results in SV19 with ζ -prescription.

• SV19: JHEP06(2020)137

parametric form

Global analysis of Sivers and Collins asymmetries within TMD factorization

Chunhua Zeng

Introduction

Theoretical formalism

TMD Factorization for SIDIS, DY and SIA

Choice of unpolarized TMD

parametric form

Data selection

Extraction o TMD

SUMMERY

Sivers function: (13 prameters for u, d, \bar{u} , \bar{d})

Transversity function: (13 prameters for u, d, \bar{u} , \bar{d})

Collins function: (22 prameters for π_{fav} , π_{unf} , K_{fav} , K_{unf})

parametric form

Global analysis of Sivers and Collins asymmetries within TMD factorization

Chunhua Zeng

Introduction

Theoretical formalism

TMD Factorization for SIDIS, DY and SIA

Choice of unpolarized TMD

parametric form

Data selection

Extraction of TMD

SUMMERY

Sivers function: (13 prameters for u, d, \bar{u} , \bar{d})

$$f_{1T;q\leftarrow\rho}^{\perp}(x,b) = N_q \frac{(1-x)^{\alpha_q} x^{\beta_q} (1+\varepsilon_q x)}{n(\beta_q,\varepsilon_q,\alpha_q)} \exp\left(-r_q b^2\right) f_{1,q}(x)$$

Transversity function: (13 prameters for u, d, \bar{u} , \bar{d})

$$h_{1;q\leftarrow p}(x,b) = N_q \frac{(1-x)^{\alpha_q} x^{\beta_q} (1+\varepsilon_q x)}{n(\beta_q,\varepsilon_q,\alpha_q)} \exp\left(-r_q b^2\right) f_{1,q}(x)$$

Collins function: (22 prameters for π_{fav} , π_{unf} , K_{fav} , K_{unf})

parametric form

Global analysis of Sivers and Collins asymmetries within TMD factorization

Chunhua Zeng

Introduction

Theoretical formalism

TMD Factorization for SIDIS, DY and SIA

Choice of unpolarized TMD

parametric form

Data selection

Extraction TMD

SUMMERY

Sivers function: (13 prameters for u, d, \bar{u} , \bar{d})

$$f_{1T;q\leftarrow\rho}^{\perp}(x,b) = N_q \frac{(1-x)^{\alpha_q} x^{\beta_q} (1+\varepsilon_q x)}{n(\beta_q,\varepsilon_q,\alpha_q)} \exp\left(-r_q b^2\right) f_{1,q}(x)$$

Transversity function: (13 prameters for u, d, \bar{u} , \bar{d})

$$h_{1;q\leftarrow p}(x,b) = N_q \frac{(1-x)^{\alpha_q} x^{\beta_q} (1+\varepsilon_q x)}{n(\beta_q,\varepsilon_q,\alpha_q)} \exp\left(-r_q b^2\right) f_{1,q}(x)$$

Collins function: (22 prameters for π_{fav} , π_{unf} , K_{fav} , K_{unf})

$$H_{1;q \to h}^{\perp}(z,b) = \frac{1}{z^2} N_q \frac{(1-z)^{\alpha_q} z^{\beta_q} (1+\varepsilon_q z)}{n(\beta_q,\varepsilon_q,\alpha_q)} \\ \times \exp\left(-\frac{\eta_{1q} z + \eta_{2q} (1-z)}{\sqrt{1+\eta_{3q} (b/z)^2}} \frac{b^2}{z^2}\right) (1+\eta_{4q} \frac{b^2}{z^2})$$

Contents

Global analysis of Sivers and Collins asymmetries within TMD factorization

Chunhua Zeng

Introduction

Theoretical formalism

TMD Factorization for SIDIS, DY and SIA

Choice of unpolarized TMD

parametric form

Data selection

Extraction of TMD

SUMMERY

Introduction

Theoretical formalism

- TMD Factorization for SIDIS, DY and SIA
- Choice of unpolarized TMD
- parametric form

3 Data selection

Extraction of TMD

Data selection:SIDIS data

Global analysis of Sivers and Collins asymmetries within TMD factorization

Chunhua Zeng

Introduction

Theoretical formalism

TMD Factorization for SIDIS, DY and SIA

Choice of unpolarized TMD

parametric form

Data selection

Extraction o TMD

SUMMERY

Measurement: Collins and Sivers asymmetries

$$A_{UT}^{\sin(\phi_h+\phi_s)} \propto h_1 \otimes H_1^{\perp}, \qquad A_{UT,T}^{\sin(\phi_h-\phi_s)} \propto f_{1T}^{\perp} \otimes f_1$$

Data selection:SIDIS data

Global analysis of Sivers and Collins asymmetries within TMD factorization

Chunhua Zeng

Introduction

Theoretical formalism

TMD Factorization for SIDIS, DY and SIA

Choice of unpolarized TMD

parametric form

Data selection

Extraction c TMD

SUMMERY

Measurement: Collins and Sivers asymmetries

$$A_{UT}^{\sin(\phi_h+\phi_s)} \propto h_1 \otimes H_1^{\perp}, \qquad A_{UT,T}^{\sin(\phi_h-\phi_s)} \propto f_{1T}^{\perp} \otimes f_1$$

- HERMES: The data to be presented during the 2002–2005 running period at the HERA lepton storage ring.
 - J. High Energy Phys. 12 (2020) 010
- COMPASS: The data to be presented during the 2002–2005, 2007, 2010 and 2022 running period at CERN.

Phys. Lett. B 673 (2009) 127–135

- Phys. Lett. B 744 (2015) 250–259
- JLab: Performed in Jefferson Lab (JLab) Hall A from 2008/11 to 2009/02.
 - Phys. Rev. Lett. 107, 072003 (2011)
 - Phys. Rev. C 90, 055201 (2014)

Data selection:SIDIS data

Global analysis of Sivers and Collins asymmetries within TMD factorization

Chunhua Zeng

Introduction

Theoretical formalism

TMD Factorization for SIDIS, DY and SIA

Choice of unpolarized TMD

parametric form

Data selection

Extraction o TMD

SUMMERY

Measurement: Collins and Sivers asymmetries

$$A_{UT}^{\sin(\phi_h+\phi_s)} \propto h_1 \otimes H_1^{\perp}, \qquad A_{UT,T}^{\sin(\phi_h-\phi_s)} \propto f_{1T}^{\perp} \otimes f_1$$

- HERMES: The data to be presented during the 2002–2005 running period at the HERA lepton storage ring.
 - J. High Energy Phys. 12 (2020) 010
- COMPASS: The data to be presented during the 2002–2005, 2007, 2010 and 2022 running period at CERN.
 - Phys. Lett. B 673 (2009) 127–135
 - 2 Phys. Lett. B 744 (2015) 250-259
 - O Phys. Rev.Lett. 133 (2024) 101903.

- JLab: Performed in Jefferson Lab (JLab) Hall A from 2008/11 to 2009/02.
 - Phys. Rev. Lett. 107, 072003 (2011)
 - Phys. Rev. C 90, 055201 (2014)

Data selection: SIDIS data

Global analysis	Dete act	Target	Poom	Dete pointe	Position
of Sivers and	Data set	Target	Deam	Data points	Reaction
Collins	HERMES	H_2	$27.6 \mathrm{GeV} e^{\pm}$	172(192)	$e^{\pm}p ightarrow e^{\pm}\pi^{+}X$
asymmetries					$e^{\pm}p ightarrow e^{\pm}\pi^{-}X$
within TMD					$e^{\pm}p \rightarrow e^{\pm}K^{+}X$
factorization					$e^{\pm}p \rightarrow e^{\pm}K^{-}X$
Chunhua Zeng	COMPASS2009	⁶ LiD	$160 \mathrm{GeV}\;\mu^+$	75(104)	$\mu^+ d o \mu^+ \pi^+ X$
Chumna Zeng					$\mu^+ d o \mu^+ \pi^- X$
					$\mu^+ d \rightarrow \mu^+ K^+ X$
Introduction					$\mu^+ d \rightarrow \mu^+ K^- X$
Theoretical	COMPASS2015	NH_3	$160 \mathrm{GeV}\;\mu^+$	75(104)	$\mu^+ p \rightarrow \mu^+ \pi^+ X$
formalism					$\mu^+ p ightarrow \mu^+ \pi^- X$
TMD Factorization					$\mu^+ p ightarrow \mu^+ K^+ X$
for SIDIS, DY and SIA					$\mu^+ p o \mu^+ K^- X$
Choice of unpolarized	COMPASS2024	⁶ LiD	$160 \text{GeV} \mu^+$	38(52)	$\mu^+ d ightarrow \mu^+ h^+ X$
TMD					$\mu^+ d o \mu^+ h^- X$
parametric form	JLab2011	³ He	$5.9 \mathrm{GeV}~e^-$	8(8)	$e^-n ightarrow e^-\pi^+ X$
Data selection					$e^-n ightarrow e^-\pi^- X$
	JLab2014	3 He	$5.9 \mathrm{GeV} e^-$	5(5)	$e^{-3}\mathrm{He} ightarrow e^- K^+ X$
Extraction of					$e^{-3}\mathrm{He} ightarrow e^- K^- X$

SUMMERY

<ロト <回 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > 3 へ (~ 13/27

Data selection: SIDIS data

Global analysis	Dete set	The second	D	Dete selete	Desetion
of Sivers and	Data set	Target	Beam	Data points	Reaction
Colline	HERMES	H_2	$27.6 \mathrm{GeV} \ e^{\pm}$	172(192)	$e^{\pm}p ightarrow e^{\pm}\pi^{+}X$
comins					$e^{\pm}p \rightarrow e^{\pm}\pi^{-}X$
within TMD					$e^{\pm}p \rightarrow e^{\pm}K^{+}X$
factorization					$e^{\pm}p \rightarrow e^{\pm}K^{-}X$
Chunhua Zeng	COMPASS2009	⁶ LiD	$160 \mathrm{GeV}\;\mu^+$	75(104)	$\mu^+ d o \mu^+ \pi^+ X$
Chumnua Zeng					$\mu^+ d o \mu^+ \pi^- X$
					$\mu^+ d \rightarrow \mu^+ K^+ X$
Introduction					$\mu^+ d \rightarrow \mu^+ K^- X$
Theoretical	COMPASS2015	NH_3	$160 \mathrm{GeV}\;\mu^+$	75(104)	$\mu^+ p \to \mu^+ \pi^+ X$
formalism					$\mu^+ p \rightarrow \mu^+ \pi^- X$
TMD Factorization					$\mu^+ p \rightarrow \mu^+ K^+ X$
for SIDIS, DY and SIA					$\mu^+ p \rightarrow \mu^+ K^- X$
Choice of unpolarized	COMPASS2024	⁶ LiD	$160 \text{GeV} \mu^+$	38(52)	$\mu^+ d o \mu^+ h^+ X$
TMD					$\mu^+ d o \mu^+ h^- X$
parametric form	JLab2011	³ He	$5.9 \mathrm{GeV}~e^-$	8(8)	$e^-n ightarrow e^-\pi^+ X$
Data selection					$e^-n \rightarrow e^-\pi^- X$
	JLab2014	3 He	$5.9 \mathrm{GeV} e^-$	5(5)	$e^{-3}\mathrm{He} ightarrow e^- K^+ X$
Extraction of TMD					$e^{-3}\mathrm{He} o e^{-}K^{-}X$

For validity of the TMD factorization, Only small δ data are selected:

$$\delta = P_{h\perp}/z/Q < 1. \tag{1}$$

13/27

Data selection: DY data

Global analysis of Sivers and Collins asymmetries within TMD factorization

Chunhua Zeng

Introduction

Theoretical formalism

TMD Factorization for SIDIS, DY and SIA

Choice of unpolarized TMD

parametric form

Data selection

Extraction c TMD

SUMMERY

Measurement: Sivers asymmetries

 $A_{IIT}^{\sin\phi} \propto f_{1T}^{\perp} \otimes f_1$

• COMPASS: The dimuon production data were collected in 2015 and in 2018 at CERN.

Phys. Rev. Lett. 133 (2024) 071902

- STAR: The data sample was collected in $2011(W^{\pm})$ and $2011-2013,2017(Z^0)$ at RHIC.
 - Phys. Rev. Lett. 116 (2016) 132301
 - Phys. Lett. B854 (2024) 138715

Data set	Reaction	Data points	
COMPASS	$\pi^- + p^\uparrow ightarrow \gamma^*$	+X 15(15)	
STAR.W+	$p^{\uparrow} + p ightarrow W^+$	+ X 8(8)	
STAR.W-	$p^{\uparrow} + p ightarrow W^{-}$.	+X = 8(8)	
STAR.Z	$p^{\uparrow} + p \rightarrow \gamma^*/Z$	$X + X \ 1(1)$	

Data selection

Global analysis of Sivers and Collins asymmetries within TMD factorization

Chunhua Zeng

Introduction

Theoretical formalism

TMD Factorization for SIDIS, DY and SIA

Choice of unpolarized TMD

parametric form

Data selection

Extraction of TMD The kinematic distributions of the data for SIDIS, Drell-Yan in $x - Q^2$ planes without(495) and with(405) δ cut .

Data seleciton SIA data

Global analysis of Sivers and Collins asymmetries within TMD factorization

Chunhua Zeng

Introduction

Theoretical formalism

TMD Factorization for SIDIS, DY and SIA

Choice of unpolarized TMD

parametric form

Data selection

Extraction o TMD

SUMMERY

Measurement: Collins asymmetries

 $A_0^{UL} \propto H_{1T}^{\perp} \otimes H_{1T}^{\perp}$

Belle:

Phys. Rev. D 78, 032011 (2008); 86, 039905(E) (2012).

- BABAR:
 - Phys. Rev. D 90, 052003 (2014).
 - Phys. Rev. D 92, 111101 (2015).
- BESIII:

Phys. Rev.Lett. 116, 042001 (2016).

Energy	Data points	Reaction
$10.58{ m GeV}$	16(16)	$e^+e^- \rightarrow \pi\pi X$
$10.6{ m GeV}$	45(45)	$e^+e^- \to \pi\pi X$
$10.6{ m GeV}$	48(48)	$e^+e^- \rightarrow \pi\pi X$
		$e^+e^- \rightarrow \pi K X$
		$e^+e^- \rightarrow KKX$
$3.65{ m GeV}$	11(11)	$e^+e^- \rightarrow \pi\pi X$
	Energy 10.58 GeV 10.6 GeV 10.6 GeV 3.65 GeV	Energy Data points 10.58 GeV 16(16) 10.6 GeV 45(45) 10.6 GeV 48(48) 3.65 GeV 11(11)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - •○ヘ

Contents

Global analysis of Sivers and Collins asymmetries within TMD factorization

Extraction of TMD

- TMD Factorization for SIDIS, DY and SIA
- Choice of unpolarized TMD
- parametric form

Extraction of TMD

4

The χ^2 values for different datasets

Global analysis of Sivers and Collins asymmetries within TMD factorization

Chunhua Zeng

Introduction

Theoretical formalism

TMD Factorization for SIDIS, DY and SIA

Choice of unpolarized TMD

parametric form

Data selection

Extraction of TMD

SIDIS	Ν	χ^2/N Sivers	χ^2/N Collins
COMPASS09	75	1.10	0.98
COMPASS15	75	2.26	1.11
COMPASS24	38	0.83	1.07
HERMES	172	1.21	1.12
JLab	11	0.93	1.09
all	373	1.35	1.08

SIA	Ν	χ^2/N
Belle	16	0.79
Babar2014	45	1.04
Babar2015	48	0.79
BESIII	11	2.24
all	120	1.01

DY	Ν	χ^2/N
COMPASSDY	15	0.79
Star	17	1.91
all	32	1.38

Sivers function with error bands

Sivers function with error bands

Introduction

Theoretica formalism

TMD Factorization for SIDIS, DY and SIA

Choice of unpolarized TMD

parametric form

Data selection

Extraction of TMD

Transversity with error bands

Introduction

Theoretical formalism

TMD Factorization for SIDIS, DY and SIA

Choice of unpolarized TMD

parametric form

Data selection

Extraction of TMD

Transversity with error bands

Global analysis of Sivers and Collins asymmetries within TMD factorization

Introduction

Theoretical formalism

TMD Factorization for SIDIS, DY and SIA

Choice of unpolarized TMD

parametric form

Data selection

Extraction of TMD

SUMMERY

Comparison of tensor charge

The tensor charge is defined as

$$\delta u = \int_0^1 dx \left(h_u(x) - h_{\bar{u}}(x) \right), \quad \delta d = \int_0^1 dx \left(h_d(x) - h_{\bar{d}}(x) \right)$$

Collins function with error bands

Collins function with error bands

Theoretical formalism

TMD Factorization for SIDIS, DY and SIA

Choice of unpolarized TMD

parametric form

Data selection

Extraction of TMD

Contents

Global analysis of Sivers and Collins asymmetries within TMD factorization

Chunhua Zeng

Introduction

Theoretical formalism

TMD Factorization for SIDIS, DY and SIA

Choice of unpolarized TMD

parametric form

Data selection

Extraction c TMD

SUMMERY

Introduction

Theoretical formalism

- TMD Factorization for SIDIS, DY and SIA
- Choice of unpolarized TMD
- parametric form

Data selection

Extraction of TMD

Summery

Global analysis of Sivers and Collins asymmetries within TMD factorization

Chunhua Zeng

Introduction

Theoretical formalism

TMD Factorization for SIDIS, DY and SIA

Choice of unpolarized TMD

parametric form

Data selectior

Extraction o TMD

SUMMERY

1. we present a global analysis of Sivers function, transversity and Collins functions encompasses the latest data sets from SIDIS as recently reported by the COMPASS Collaborations.

2.Upon integrating this new data into our fitting, the accuracy of the d, \bar{d} quark extraction for both transversity and Sivers distribution is notably improved, as well as the tensor charge.