

Yuxiang Zhao (yxzhao@impcas.ac.cn)

Institute of Modern Physics, Chinese Academy of Sciences

Outline

- Introduction
- Selected physics highlights at EicC
- Detector conceptual design
- Summary

Experimentally... we need to determine each of the above contributions

Origin of proton mass

Lattice QCD calculation Phys. Rev. Lett. 121 (2018) 21, 212001

- **Quark energy** and **gluon energy** constrained by PDFs
- Quark mass via πN low energy scattering

Trace anomaly via threshold production of J/Psi and Upsilon????

One of the hot topics under discussions

Near threshold J/Psi production

Near threshold Upsilon production

&

Origin of proton spin

Quark spin contribution

Gluon spin contribution

Quark/gluon OAM

$$S_{tot} = \frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + \mathcal{L}_q + \mathcal{L}_g$$

EicC white paper (arXiv: 2102.09222)

Published in the *Frontiers of Physics* (2021)

https://link.springer.com/article/10.1007/s11467-021-1062-0

- Spin structure of the nucleon: 1D, 3D
 - polarized electron + polarized proton/light nuclei
- Partonic structure of nuclei and the Parton interaction with the cold nuclear environment
 >unpolarized electron + unpolarized various nuclei
- Quarkonium with c/c-bar, b/b-bar
- Origin of the proton mass study

Detector + Accelerator preliminary design

45 institutes and >100 physicists

Electron Ion Collider in China...Huizhou(惠州) in Guangdong province

HIAF under construction

Location: Huizhou, Guangdong

8

High Intensity heavy-ion Accelerator Facility (HIAF)

High Intensity heavy-ion Accelerator Facility (HIAF)

EicC Accelerator complex layout

- EicC covers the kinematic region between JLab experiments and EIC@BNL
- EicC complements the ongoing scientific programs at JLab and future EIC project
- EicC focuses on moderate x and sea-quark region

Kinematic region VS physics

See a video at: http://eicug.org/

- Different x \rightarrow different picture
- Broad Q² coverage:
 - QCD evolution
 - ➢ Non-perturbative → perturbative

Gluon dominates

Valence quarks

Outline

- Introduction
- Selected physics highlights at EicC
- Detector conceptual design
- Summary

EicC and EIC-helicity distribution via SIDIS (1D spin)

D. Anderle, T. Hou, H. Xing, M. Yan, C. -P. Yuan, Y. X. Zhao, JHEP08, 034 (2021)

EicC and EIC-gluon polarization (at large x)

 $A_{LL}^{\vec{e}+\vec{p}\to e'+D^{0}+X} = \frac{d\sigma^{++} - d\sigma^{+-}}{d\sigma^{++} + d\sigma^{+-}}$ $N^{++} - N^{+-}$ $= \overline{P_e P_p} \overline{N^{++} + N^{+-}}$ e e γ*(q) C С **g** (N(p)

EicC and EIC-gluon polarization (at large x)

 $e + p \rightarrow e' + D^0 + x$ 0.3 $A_{LL}^{\vec{e}+\vec{p}\to e'+D^{0}+X} = \frac{d\sigma^{++} - d\sigma^{+-}}{d\sigma^{++} + d\sigma^{+-}}$ 50 0.25 EIC Charm hadrons Absolute uncertaint 0.2 A^c₁ Abs. Polarizations: 18 GeV x 275 GeV e: 80%, p: 70% Int. Luminosity: 100 0.15 Uncert 3.0 0.1 EicC 3.5 x 20 GeV² EIC 5 x 41 GeV² 2.5 0.05 EIC 18 x 275 GeV² 0.0 ^{2.0} م/م^س 10⁻¹ complementary 1.0 0.3 + x 0.5 EicC 0.25 10^{-1} 10-2 A^c₁ Abs. х zations e: 80%, p: 70% 0.2 (Ge/ 3.5 GeV x 20 GeV С 0.15 Uncert Ö 20 10 0.05 N(p) 0.0 10⁻³ 10-2 10⁻¹ Bjorken x

D. Anderle, X. Dong, ..., E. Sichtermann, ..., F. Yuan, Y. X. Zhao, Phys. Rev. D104, 114039 (2021)

GPDs: deformation of Parton's spatial distribution when hadron is polarized TMDs: deformation of Parton's confined motion when hadron is polarized

EicC impact on Transversity

C. Zeng, H. Dong, T. B. Liu, P. Sun, and Y. X. Zhao, Phys. Rev. D 109 (5), 056002 (2024)

EicC can significantly improve the precision of transversity distributions, especially for sea quarks

Results on Tensor Charge

 $g_T = \delta u - \delta d$

C. Zeng, H. Dong, T. B. Liu, P. Sun, and Y. X. Zhao, Phys. Rev. D 109 (5), 056002 (2024)

More words on TMDs study

Collins effect observable

Sivers effect observable

For TMDs study: We need a moderate-energy EIC but with high luminosity

J/Psi production at EicC

For W=10-20 GeV,

- Photoproduction: $\sigma(\gamma p \to J/\psi p) \sim O(10 \text{ nb})$, (no resonant enhancement considered), $\sigma(\gamma p \to c\bar{c}X) \sim 50\sigma(\gamma p \to J/\psi p)$
- Leptoproduction: cross sections are roughly two orders of magnitude (α) smaller
- For an integrated luminosity of 50 fb⁻¹, no. of J/ψ is ~ $O(10^7 10^8)$; many more opencharm hadrons D and Λ_c

Upsilon production at EicC

For W=15-20 GeV,

• Photoproduction: $\sigma(\gamma p \to \Upsilon p) \sim O(10 \text{ pb})$ (no resonant enhancement considered),

 $\sigma(\gamma p \rightarrow b \overline{b} X)$ is about two orders higher

- Electroproduction: roughly two orders of magnitude (α) smaller, ~ O(0.1 pb)
- For an integrated luminosity of 50 fb⁻¹, no. of Υ is ~ $O(10^4)$;

Search for exotic states at EicC

• Cross section estimates for exclusive reactions assuming VMD (highly model-dependent)

Estimated events for EicC (50 /fb)

Exotic states	$\operatorname{Production/decay}_{\operatorname{processes}}$	Detection efficiency	Expected events
$P_c(4312)$	$ep \rightarrow eP_c(4312)$ $P_c(4312) \rightarrow pJ/\psi$ $J/\psi \rightarrow l^+l^-$	$\sim\!\!30\%$	15 - 1450
$P_{c}(4440)$	$ep \rightarrow eP_c(4440)$ $P_c(4440) \rightarrow pJ/\psi$ $J/\psi \rightarrow l^+l^-$	${\sim}30\%$	20-2200
$P_{c}(4457)$	$ep \rightarrow eP_c(4457)$ $P_c(4457) \rightarrow pJ/\psi$ $J/\psi \rightarrow l^+l^-$	$\sim\!\!30\%$	10-650
$P_b(\text{narrow})$	$\begin{split} ep &\rightarrow eP_b(\text{narrow}) \\ P_b(\text{narrow}) &\rightarrow p\Upsilon \\ &\Upsilon &\rightarrow l^+l^- \end{split}$	$\sim\!\!30\%$	0-20
$P_b(\text{wide})$	$ep \rightarrow eP_b(\text{wide})$ $P_b(\text{wide}) \rightarrow p\Upsilon$ $\Upsilon \rightarrow l^+ l^-$	$\sim\!\!30\%$	0-200
$\chi_{c1}(3872)$	$ep \rightarrow e\chi_{c1}(3872)p$ $\chi_{c1}(3872) \rightarrow \pi^+\pi^- J/\psi$ $J/\psi \rightarrow l^+l^-$	$\sim 50\%$	0-90
$Z_c(3900)^+$	$ep \rightarrow eZ_c(3900)^+ n$ $Z_c^+(3900) \rightarrow \pi^+ J/\psi$ $J/\psi \rightarrow l^+ l^-$	~60%	90-9300

26

Outline

- Introduction
- Selected physics highlights at EicC
- Detector conceptual design
- Summary

28

Tracking: Silicon + MPGD

EicC detector design

	Law attack) D'		Material Budget	Tesh
R(cm)	Length(ci	m) Pix	el Pitch(µm)	(X/X0 %)	Tech
3.30	28.0		20	0.05	MIC7
4.35	28.0		20	0.05	MIC7
5.40	28.0		20	0.05	MIC7
34.85	90.61		25	0.85	MIC6
38.15	90.61		25	0.85	MIC6
	174.00	15	(= 1)	0.40	MDCD
05.50	174.88	150	$D(r\phi)$ X150(Z)	0.40	MPGD
67.50	174.88	150	$(r\phi)$ x150(z)	0.40	MPGD
In R(cm)	Out R(cm)	Z(cm)	Pixel Pitch	μm) Material Budge (μm) (X/X0 %)	t _{Tech}
3.18	18.62	25	25	0.42	MIC6
3.18	36.50	49	25	0.42	MIC6
3.4 <i>1</i> 5.08	55.00	103.65	25	0.42	MIC6
6.58	67.50	134.33	25	0.42	MIC6
8.16	150.00	165.00	50(rφ)x25	0(r) 0.26	MPGD
In R(cm)	Out R(cm)	Z(cm)	Pixel Pitch	(μm) Material Budge (X/X0 %)	t Tech
3.18	18.62	-25	25	0.42	MIC6
3.18	36.50	-49	25	0.42	MIC6
3.18	55.00	-73	25	0.42	MIC6
3.95	67.50	-109.0	25	0.42	MIC6
5.26	67.50	-145.0	25	0.42	MIC6

PID: ToF + (DIRC + RICH)

PID: ToF + (DIRC + RICH)

PID: ToF + (DIRC + RICH)

Timeline

Summary

- EicC is briefly introduced
 - EicC focuses on sea-quark/gluon related study at moderate/large-x region
 - EicC complements EIC physics program at higher energy
 - ≻EicC CDR will be released soon
- HIAF will deliver the first ion beam in 2025 \rightarrow EicC is part of the upgrade plan, likely within 2030-2040
- International interests/involvements are very welcome! Contact me: yxzhao@impcas.ac.cn

Backups

EicC Accelerator complex layout

sTGC detector

Detector R&Ds

Clean rooms of ISO6 and ISO7 (in total of 200 m²) for detector assembling

ALICE style ITS2 MAPS pixel detector

- 25cm x 25 cm Micromegas mass production
- R&D on 0.4m x 0.4m

1m x 0.5 m GEM (self-stretching)

Shashlyk and W-powder+ScFi EMCal

DIRC prototype

