Origin of hadron spin based on Lattice QCD study of the charmed hadrons

Yi-Bo Yang

With Fangcheng He and Jian Liang

based on arXiv: 2410.08046

Outline

Hadron spin and quark model

$$J = \frac{1}{2}\Delta q + L_q + J_G,$$

• Gluon AM and spin

Discussion

t_f(fm)

R. L. Jaffe and A. V. Manohar, NPB337(1990)509

Connections between decompositions

Proton spin

Longitudinal proton spin structure

 $\int d^3x \psi^\dagger \left\{ ec{x} imes (i ec{
abla})
ight\} \psi$

+ $\int d^3x 2 \operatorname{Tr}[E^i \vec{x} \times \vec{\nabla} A^i]$

Quark and gluon OAM

Naïve spin sum rule:

$$\frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + l_q^z + l_q^z$$

Decomposition from experiment

Proton spin

	u-quark		d-quark		
J_z	1/2	-1/2	1/2	-1/2	1
Quark model	5/3	1/3	1/3	2/3	
Exp.	1.43(2)	0.57(2)	0.29(2)	0.71(2)	-0.0

 $q^{1/2} + q^{-1/2} = g_V, \quad q^{1/2} - q^{-1/2} = g_A \equiv \Delta q$

Decomposition of quark polarizations

• The SU(6) quark model:

 $\Delta u \rightarrow 4/3, \Delta d \rightarrow -1/3,$ $\Delta s \rightarrow 0, \Delta g \rightarrow 0$

See e,g, B.Q. Ma, et.al., EPJA 12(2001)353

• The polarized neutron decay: ∆u-∆d = **1.2723(23)**;

Lattice and experimental PDF fit: $\Delta u \sim 0.86, \Delta d \sim -0.41,$ $\Delta s \sim -0.04, \Delta g \sim 0.4.$

Proton spin

• Define the gluon spin ExA under the Coulomb gauge;

Boost it to the large momentum limit to estimate the gluon helicity.

Outline

Hadron spin and quark model

$$J = \frac{1}{2}\Delta q + L_q + J_G,$$

• Gluon AM and spin

Discussion

and QCD

- QCD is non-perturbative at the hadron scale;
- Lattice QCD can provide first principle predictions on the hadron spin decomposition, as functions of quark mass.

charmonium system

Quantum numbers					Mass	Width
n	L	J^{PC}	$n^{2S+1}L_J$	Name	(MeV)	(MeV ^a)
1	0	0-+	$1^{1}S_{0}$	$\eta_c(1S)$	2980.4 ± 1.2	25.5 ± 3.4
1	0	1	$1^{3}S_{1}$	J/ψ	3096.916 ± 0.011	93.4±2.1 keV
1	1	0++	$1^{3}P_{0}$	$\chi_{c0}(1P)$	3414.76 ± 0.35	10.4 ± 0.7
1	1	1++	$1^{3}P_{1}$	$\chi_{c1}(1P)$	3510.66 ± 0.07	0.89 ± 0.05
1	1	2++	$1^{3}P_{2}$	$\chi_{c2}(1P)$	3556.20 ± 0.09	2.06 ± 0.12
1	1	1+-	$1^{1}P_{1}$	$h_c(1P)$	3525.93 ± 0.27	<1

Charmonium under DD threshold can be treated as stable particles:

- Quark model gives $J_G = 0$, $J = \frac{1}{2}\Delta q + L_q$.
- $^{\rm o}$ Both quark and anti-quark contribute equally to the Δq and canceled the factor 1/2;
- The J = 0 case can not be decomposed since one can not make the quark to be polarized along "that of hadron".

$$\Delta q_H = \langle H(\uparrow) | \mathscr{A}_z | H(\uparrow) \rangle$$

Contribution from quark spin/orbital angular momentum should be understood as the weighted average of quantized values:

• The 1⁻⁻⁻ case:
$$L_q = 0$$
, and then
 $J_H = \langle S_q \rangle_H = \frac{1}{2} \langle \Delta q \rangle_H;$
• The J⁺⁺ case: $L_q = S_q$, and then
 $\langle S_q \rangle_H = \langle L_q \rangle_H = \frac{1}{2} J;$
• The 1⁺⁻⁻ case: $S_q = 0$, and then
 $J = \langle L_q \rangle.$

charmonium spin decomposition

Simulation setup

Overlap fermion on 2+1 flavor DWF+Iwasaki configuration from RBC collaboration:

- Chiral fermion which avoid the systematic uncertainty from additive chiral symmetry breaking;
- Tune the charm quark mass using the physical J/ψ mass;
- Predictions of P-wave charmonium masses agree with PDG with in 2%.

Taking the quark spin $S_q = \sum \bar{q}(x)\gamma_z\gamma_5 q(x)$ along the z-direction as example, the correlation functions of the hadron with given J_z can be rewritten into those using different Lorentz components:

$$V_{+} = \frac{1}{\sqrt{2}} (V_{x} + iV_{y})$$

$$\langle V_{+} | S_{q} | V_{+} \rangle = - \langle V_{-} | S_{q} | V_{-} \rangle \neq 0$$

$$V_{0} = V_{z}$$

$$\langle V_{0} | S_{q} | V_{0} \rangle = 0$$

$$\langle V_{z} | S_{q} | V_{z} \rangle =$$

$$V_{-} = \frac{1}{\sqrt{2}} (V_{x} - iV_{y})$$

The numerical results suggest that the excited state contaminations are highly suppressed at $t_f \ge 0.5$ fm.

The J = 2 case includes more combinations, while most of them vanish except:

- $\langle T_2^y | S_q | T_2^x \rangle$ needed by $\langle T_{J_{z}=1} | S_{q} | T_{J_{z}=1} \rangle$;
- $\langle E^a | S_a | T_2^z \rangle$ needed 0 by $\langle T_{J_z=2} | S_q | T_{J_z=2} \rangle$.

T_2^x	6
T_2^y	6
T_2^z	6
E^{a}	
E^b	

$$\langle T_{J_z=2} | S_q | T_{J_z=2} \rangle = 2 \langle T_{J_z=2} \rangle$$

$$\langle E^a | S_q | T_2^z \rangle = 2 \langle T_2^x |$$

and charmonium spin with J=2

contribution to charmonium spin

- The 1⁻⁻ case: $\langle S_q \rangle_H = 0.893(03);$
- o The 1⁺⁺ case: $\langle S_q \rangle_H = 0.448(55);$
- The 2⁺⁺ case: $\langle S_q \rangle_H = 0.436(11)$ for $J_z = 1$;
- The 1⁺⁻ case: $\langle S_q \rangle_H = 0.080(70)$.

Agree with the quark model prediction at 90% level.

and $(1/2)^+$ triple-heavy quark baryon spin

 $\langle S_{u,d} \rangle_N$ also agree with the quark model prediction at 90% level:

• The u-type quark:

$$\langle S_u \rangle_N = \frac{1}{2} \times 1.20(4) = 0.90(3) \langle S_u \rangle_N^{\text{quark model}};$$

• The d-type quark:
 $\langle S_d \rangle_N = \frac{1}{2} \times (-)0.30(1) = 0.90(3) \langle S_d \rangle_N^{\text{quark model}};$

 $\langle S_u \rangle_N / \langle S_d \rangle_N = -4.0(1)$ is exactly the same as the quark model prediction!

Outline

Hadron spin and quark model

$$J = \frac{1}{2}\Delta q + L_q + J_G,$$

Gluon AM and spin

Discussion

t_f(fm)

$$T^{g}_{\mu\nu} = 2\text{Tr}G^{\rho}_{\mu}G_{\rho\nu} + \frac{1}{2}g_{\mu\nu}\text{Tr}G^{\rho\lambda}G_{\rho\lambda}$$

• The total angular momentum (AM) of gluon (and also quark) can be extracted from the form factors of their energy momentum tensor (EMT) in the hadron,

 $\langle p', \sigma' | \hat{T}^a_{\mu\nu}(0) |$ $\langle p' | T^a_{\mu\nu} | p \rangle = \overline{u}(p') \left(A^a(q^2) \gamma^{(\mu} \overline{P}^{\nu)} + B^a(q^2) \frac{i \overline{P}^{(\mu} \sigma^{\nu)\alpha} q_\alpha}{2m_N} \right)$ $+C^{a}(q^{2})\frac{q^{\mu}q^{\nu}-\eta^{\mu\nu}q^{2}}{m_{N}}\Big)u(p),$ $J_g^N = \frac{1}{2} (A^g(0) + B^g(0)) \qquad B^q(0) + B^g(0) = 0$

Spin 1/2 case

Form factors of EMT

 $+ \left[\frac{1}{2}(\epsilon_{\mu}\epsilon_{\nu}^{\prime*} + \epsilon_{\mu}^{\prime*}\epsilon_{\nu})q^{2} - (\epsilon_{\mu}^{\prime*}q_{\nu} + \epsilon_{\nu}^{\prime*}q_{\mu})\epsilon \cdot \bar{P} + (\epsilon_{\mu}q_{\nu} + \epsilon_{\nu}q_{\mu})\epsilon^{\prime*} \cdot \bar{P} - 4g_{\mu\nu}\epsilon^{\prime*} \cdot \bar{P}\epsilon \cdot \bar{P}\right]E^{a}(q^{2}),$ $J_g^V = J^g(0) + \frac{1}{2}\bar{f}^g(0)$ Spin 1 case

• One shall calculate the form factors at finite q^2 , and extrapolate to the forward limit. The quark orbital angular momentum can be obtained through the sum rule $L_q = J - S_q - J_g$.

• For the $1^{--}(J/\psi)$ case, one can obtain $\bar{f}^{g}(0)$ in the rest frame, plus $J^{g}(0)$ through the approximation $J^{g}(0) \simeq J^{g}(q^{2})(1 + \frac{q^{2}}{M_{\text{pole}}^{2}}) = J^{g}(q^{2}) + \mathcal{O}(5\%) \text{ using } J^{g}(q^{2}) \text{ at the smallest non-zero } q^{2}.$ • For the $(1/2)^+$ triple-heavy quark baryon, we neglect $B^g(0)$ which is small even in the light quark case, and obtain $A^{g}(0)$ in the rest frame.

Baryon and J/ψ

	Final state <i>p'</i> = (<i>E</i> ,0,0, <i>k</i>)	Initial state p = (m,0,0,0)	Matrix elements
	$\epsilon' = (0,0,1,0)$	$\epsilon = (0,0,0,1)$	$\langle p', \sigma'_{y} T_{4y} p, \sigma_{z} \rangle = -i \frac{k}{4E_{f}} \left[(E_{f} + m)J^{g}(q^{2}) - (E_{f} - m)E^{g}(q^{2}) - (E_{f} - m)E^{g}(q^{2}) - (E_{f} - m)E^{g}(q^{2}) \right]$
	$\epsilon' = (\frac{q}{m}, 0, 0, \frac{E}{m})$	$\epsilon = (0,0,1,0)$	$\begin{split} \langle p', \sigma'_{z} T_{4y} p, \sigma_{y} \rangle &= \mathrm{i} \frac{k}{4E_{f}} \Big[\frac{(E_{f} + m)(2m^{2} + k^{2})}{2m^{2}} J^{g}(q^{2}) \\ &+ \Big((E_{f} - m) - \frac{k^{2}(E_{f} + m)}{2m^{2}} \Big) E^{g}(q^{2}) + \mathrm{i} \frac{k^{2}(E_{f} + m)}{2m^{2}} \Big] E^{g}(q^{2}) + \mathrm{i} \frac{k^{2}(E_{f} - m)}{2m$
	$\epsilon' = (0, 1, 0, 0)$	$\epsilon = (0, 0, 1, 0)$	$\left\langle p', \sigma'_{x} T_{xy} p, \sigma_{y} \right\rangle = \left[-\frac{k^2}{2} E^g(q^2) + m^2 \overline{f}^g(q^2) \right] \frac{1}{2E_f}$

Operator mixing

Mix with 1^{--} for the boosted 1^{+-}

	Final state p' = (E,0,0,k)	Initial state p = (m,0,0,0)	Matrix elements
	$\epsilon' = (0,0,1,0)$	$\epsilon = (0, 0, 0, 1)$	$\left\langle p', \sigma'_{y} \right T_{4y} \left p, \sigma_{z} \right\rangle = -\operatorname{i} \frac{k}{4E_{f}} \left[(E_{f} + m)J^{g}(q^{2}) - (E_{f} - m)E^{g}(q^{2}) \right]$
	$\epsilon' = (\frac{q}{m}, 0, 0, \frac{E}{m})$	$\epsilon = (0, 0, 1, 0)$	$\begin{split} \langle p', \sigma'_{z} T_{4y} p, \sigma_{y} \rangle &= \mathrm{i} \frac{k}{4E_{f}} \Big[\frac{(E_{f} + m)(2m^{2} + k^{2})}{2m^{2}} J^{g}(q^{2}) \\ &+ \Big((E_{f} - m) - \frac{k^{2}(E_{f} + m)}{2m^{2}} \Big) E^{g}(q^{2}) + \mathcal{I}_{g}(q^{2}) \Big] \Big] \end{split}$
I	$\epsilon' = (0, 1, 0, 0)$	$\epsilon = (0, 0, 1, 0)$	$\left\langle p', \sigma'_{x} \left T_{xy} \right p, \sigma_{y} \right\rangle = \left[-\frac{k^{2}}{2} E^{g}(q^{2}) + m^{2} \overline{f}^{g}(q^{2}) \right] \frac{1}{2E_{f}}$
Mix with 0^{-+} for the boosted 1^{++}			

• But for the $1^{++(-)}$ cases, not all the conditions can be used to solve $J^{g}(q^{2})$, due to the operator mixing with the S-wave charmonium states.

Consistency check of form factor

	Mix with $1^{}$ f	for the boosted 1 ⁺⁻
Final state p' = (E,0,0,k)	Initial state p = (m,0,0,0)	Matrix elements
$\epsilon' = (0,0,1,0)$	$\epsilon = (0,0,0,1)$	$\langle p', \sigma'_{y} T_{4y} p, \sigma_{z} \rangle = -i \frac{k}{4E_{f}} \Big[(E_{f} + m) J^{g}(q^{2}) - (E_{f} - m) E^{g}(q^{2}) \Big]$
$\epsilon' = (\frac{q}{m}, 0, 0, \frac{E}{m})$	$\epsilon = (0, 0, 1, 0)$	$\begin{split} \langle p', \sigma'_{z} T_{4y} p, \sigma_{y} \rangle &= \mathrm{i} \frac{k}{4E_{f}} \Big[\frac{(E_{f} + m)(2m^{2} + k^{2})}{2m^{2}} J^{g}(q^{2}) \\ &+ \Big((E_{f} - m) - \frac{k^{2}(E_{f} + m)}{2m^{2}} \Big) E^{g}(q^{2}) + \mathcal{I}_{g}(q^{2}) \Big] \Big] \end{split}$
$\epsilon' = (0, 1, 0, 0)$	$\epsilon = (0, 0, 1, 0)$	$\left\langle p', \sigma'_{x} \left T_{xy} \right p, \sigma_{y} \right\rangle = \left[-\frac{k^{2}}{2} E^{g}(q^{2}) + m^{2} \overline{f}^{g}(q^{2}) \right] \frac{1}{2E_{f}}$

[•] Mix with 0^{-+} for the boosted 1^{++}

If we approximate $\bar{f}^g(q^2)$ with $\bar{f}^g(0)$:

1⁻⁻: J^g(q²) can be obtained through Condition I+III or II+III, or I+II+III;
1⁺⁺: J^g(q²) can be obtained through Condition I+III;
1⁺⁻: J^g(q²) can be obtained through Condition II+III.

Gluon AM and spin Contribution from different form factors

- case;
- uncertainty.

• Comparing with \bar{f}^g , J^g is much larger in the 1^{--}

• In the $1^{++(-)}$ cases, both J^g and \bar{f}^g are consistent with zero, while J^g has larger

• Thus $J_g^V = J^g(0) + \frac{1}{2}\bar{f}^g(0)$ would be dominant by J^g , while J^g can not be obtained in the rest frame, which is different from the 1/2 baryon case.

Gluon AM and spin gluon AM in different charmed hadron

- $J_g^V = J^g(0) + \frac{1}{2}\bar{f}^g(0)$ in all the cases we studied here are small (~0.1);
- Contribution in the $(1/2)^+$ triple-heavy quark baryon case is $0.1/0.5 \sim 20\%$ which is approximated by $A(0) = \langle x \rangle_g$;
- $\langle x \rangle_g$ in the charmonium states are also ~20%, but gluon AM is 10% (1⁻⁻) or even smaller (1⁺⁺⁽⁻⁾);
- Direct calculation of $B^g(q^2)$ should be helpful to provide more accurate prediction on $J_g^N = \frac{1}{2}(A^g(0) + B^g(0)).$

gluon spin under Coulomb gauge

- YBY, R. Sufian, et. al., xQCD collaboration, PRL118(2017) 042001
- Gluon spin $E \times A$ under Coulomb gauge can also be calculated for the charmed hadron;
- ~10% for J/ψ and $(1/2)^+$ heavy quark baryon, and even smaller for the $1^{++(-)}$ states;
- More or less similar to the gluon AM.

Outline

Hadron spin and quark model

$$J = \frac{1}{2}\Delta q + L_q + J_G,$$

• Gluon AM and spin

Discussion

t_f(fm)

Discussion

Summary of the results

 $L_q = J$.

When the quark mass is as heavy as $m_q = m_c \sim 1.2 \text{ GeV}$:

- Quark spin contribution agree with the quark model prediction at 90% level;
- Quark OAM obtained through the sum rule $L_q = J - S_q - J_g$ also consistent with expectation.
- Gluon contributions are not negligible in some cases which suggests that the charm quark is still not heavy enough.

Discussion

Relativity of quark

Discussion

The charmonium mass $M_H = T^{00} = H_E + H_m$ decomposition suggests that $H_E = \langle$ $1 - v^2 \simeq \langle H_m \rangle_H / \langle H_q \rangle_H \sim 0.9;$

Similar to $\langle S_q \rangle_H / \langle S_q \rangle_H^{\text{Quarkmodel}}$.

Relativity of quark

$$\begin{split} H_E + H_m + H_g + \frac{1}{4} (H_a^q + H_a^g) \\ H_E &= \langle \int d^3 x \bar{\psi} (\vec{D} \cdot \vec{\gamma}) \psi \rangle_H \\ H_m &= \langle \int d^3 x m \bar{\psi} \psi \rangle_H \\ H_q &= H_E + H_m \\ &= \langle \int d^3 x \bar{\psi} D_4 \gamma_4 \psi \rangle_H \end{split}$$

The nucleon mass decomposition suggests that $1 - v^2 \simeq \langle H_m \rangle_H^l / \langle H_a \rangle_H \sim 0.1;$

Relativistic effect makes nucleon to be complicated.

Summary

- Contributions of quark spin and OAM to the charmonium and also proton-like triple heavy quark state are comparable with the expectation of non-relativistic quark model;
- Provides evidence that the nontriviality of proton spin decomposition mainly arises from the relativistic effects of the light quark.
- More systematic study is on going.

1.5 0.5 0.0 -0.5

Δd: -41(2)%

