With Fangcheng He and Jian Liang

based on arXiv: 2410.08046

Origin of hadron spin based on Lattice QCD study of the charmed hadrons

Yi-Bo Yang

 t_f (fm)

• Hadron spin and quark model

• Gluon AM and spin

Outline

$$
J = \frac{1}{2}\Delta q + L_q + J_G,
$$

Connections between decompositions

R. L. Jaffe and A. V. Manohar, NPB337(1990)509

Decomposition from experiment

Proton spin

Longitudinal proton spin structure

 $\int d^3x \psi^\dagger\left\{ \vec{x} \times (i\vec{\nabla})\right\} \psi$

+ $\int d^3x 2 \text{Tr}[E^i \vec{x} \times \vec{\nabla} A^i]$

Quark and gluon OAM

Naïve spin sum rule:

$$
\frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + l_q^z + l_q^z
$$

Decomposition of quark polarizations

Proton spin

• The SU(6) quark model:

 $\Delta u \rightarrow 4/3$, $\Delta d \rightarrow -1/3$,

 $\Delta s \rightarrow 0$, $\Delta g \rightarrow 0$

 $q^{1/2} + q^{-1/2} = g_V$, $q^{1/2} - q^{-1/2} = g_A \equiv \Delta q$

• Lattice and experimental PDF fit: Δu ~0.86, Δd ~-0.41, Δs ~-0.04, Δg ~0.4.

• The polarized neutron decay: Δu-Δd **= 1.2723(23);**

See e,g, B.Q. Ma, et.al., EPJA 12(2001)353

Proton spin

• Define the gluon spin ExA under the Coulomb gauge;

• Boost it to the large momentum limit to estimate the gluon helicity.

• Discussion

• Hadron spin and quark model

• Gluon AM and spin

Outline

$$
J = \frac{1}{2}\Delta q + L_q + J_G,
$$

and QCD

- QCD is non-perturbative at the hadron scale;
- Lattice QCD can provide first principle predictions on the hadron spin decomposition, **as functions of quark mass**.

Charmonium under DD threshold can be treated as stable particles:

- Quark model gives $J_G = 0$, $J =$ 1 2 $\Delta q + L_q$.
- Both quark and anti-quark contribute equally to the Δq and \circ canceled the factor 1/2;
- The $J = 0$ case can not be decomposed since one can not make the quark to be polarized along "that of hadron".

$$
\Delta q_H = \langle H(\uparrow)\,|\,\mathcal{A}_z\,|\,H(\uparrow)\,\rangle
$$

Quark spin

charmonium system

Contribution from quark spin/orbital angular momentum should be understood as the weighted average of quantized values:

o The 1⁻ case:
$$
L_q = 0
$$
, and then
\n
$$
J_H = \langle S_q \rangle_H = \frac{1}{2} \langle \Delta q \rangle_H;
$$
\n
$$
J_H = J^{++} \text{ case: } L_q = S_q \text{, and then}
$$
\n
$$
\langle S_q \rangle_H = \langle L_q \rangle_H = \frac{1}{2} J;
$$
\n
$$
J = \langle L_q \rangle.
$$

charmonium spin decomposition

Simulation setup

- Chiral fermion which avoid the systematic uncertainty from additive chiral symmetry breaking;
- Tune the charm quark mass using the physical mass ;
- Predictions of P-wave charmonium masses agree *J/ψ* mass;
Predictions of P-wave
charmonium masses
with PDG with in 2%.

Overlap fermion on 2+1 flavor DWF+Iwasaki con figuration from RBC collaboration:

$$
V_{+} = \frac{1}{\sqrt{2}} (V_{x} + iV_{y})
$$

\n
$$
V_{0} = V_{z}
$$

\n
$$
V_{-} = \frac{1}{\sqrt{2}} (V_{x} - iV_{y})
$$

\n
$$
(V_{+} | S_{q} | V_{+}) = -\langle V_{-} | S_{q} | V_{-} \rangle \neq 0
$$

\n
$$
\langle V_{0} | S_{q} | V_{0} \rangle = 0
$$

\n
$$
\langle V_{z} | S_{q} | V_{z} \rangle = 0
$$

\n
$$
\langle V_{z} | S_{q} | V_{z} \rangle = 0
$$

Taking the quark spin $S_q = \sum \bar{q}(x) \gamma_z \gamma_5 q(x)$ along the z-direction as example, the correlation functions of the hadron with given J_z can be rewritten into those using different Lorentz components: *x*

The numerical results suggest that the excited state contaminations are highly suppressed at $t_f \geq 0.5$ fm.

and charmonium spin with J=2

Quark spin

$$
\mathbb{Q}_{111} = \frac{1}{\sqrt{2}}; \quad \mathbb{Q}_{122} = -\frac{1}{\sqrt{2}}
$$

$$
\mathbb{Q}_{222} = -\frac{1}{\sqrt{2}}
$$

The $J = 2$ case includes more combinations, while most of them vanish except:

- $\langle T_2^y | S_q | T_2^x \rangle$ needed by $\langle T_{J_z=1} | S_q | T_{J_z=1} \rangle;$
- $\langle E^a | S_q | T_2^z \rangle$ needed \circ by $\langle T_{J_z=2} | S_q | T_{J_z=2} \rangle$.

$$
\langle T_{J_z=2} | S_q | T_{J_z=2} \rangle = 2 \langle T_{J_z=2} \rangle
$$

$$
\langle E^a | S_q | T_2^z \rangle = 2 \langle T_2^x |
$$

contribution to charmonium spin

Quark spin

- The 1⁻⁻ case: $\langle S_q \rangle_H = 0.893(03)$;
- The 1^{++} case: $\langle S_q \rangle_H = 0.448(55)$;
- The 2^{++} case: $\langle S_q \rangle_H = 0.436(11)$ for $J_z = 1$;
- The 1^{+-} case: $\langle S_q \rangle_H = 0.080(70)$.

Agree with the quark model prediction at 90% level.

 $\Delta q=0,$ $L_q = J$.

and $(1/2)^+$ triple-heavy quark baryon spin

 $\langle S_{u,d} \rangle_N$ also agree with the quark model prediction at 90% level:

 $\langle S_u \rangle_N / \langle S_d \rangle_N = -4.0(1)$ is exactly the same as the quark model prediction!

o The u-type quark:
\n
$$
\langle S_u \rangle_N = \frac{1}{2} \times 1.20(4) = 0.90(3) \langle S_u \rangle_N^{\text{quark model}};
$$
\no The d-type quark:
\n
$$
\langle S_d \rangle_N = \frac{1}{2} \times (-0.30(1)) = 0.90(3) \langle S_d \rangle_N^{\text{quark m}}
$$

 t_f (fm)

• Hadron spin and quark model

• Gluon AM and spin

Outline

$$
J = \frac{1}{2}\Delta q + L_q + J_G,
$$

Form factors of EMT

• The total angular momentum (AM) of gluon (and also quark) can be extracted from the

 $J_{g}^{V} = J^{g}(0) +$ 1 2 $J_g^V = J^g(0) + \frac{1}{2} \bar{f}^g(0)$ **Spin 1 case**

 \bullet One shall calculate the form factors at finite q^2 , and extrapolate to the forward limit. The quark orbital angular momentum can be obtained through the sum rule $L_a = J - S_a - J_a$. $L_q = J - S_q - J_g$

Gluon AM and spin

$$
T_{\mu\nu}^g = 2\mathrm{Tr}G_{\mu}^{\rho}G_{\rho\nu} + \frac{1}{2}g_{\mu\nu}\mathrm{Tr}G^{\rho\lambda}G_{\rho\lambda}
$$

form factors of their energy momentum tensor (EMT) in the hadron,

$$
\langle p'|T_{\mu\nu}^{a}|p\rangle = \overline{u}(p')\left(A^{a}(q^{2})\gamma^{(\mu}\bar{P}^{\nu)} + B^{a}(q^{2})\frac{i\bar{P}^{(\mu}\sigma^{\nu)\alpha}q_{\alpha}}{2m_{N}} + C^{a}(q^{2})\frac{4^{i\bar{P}^{(\mu}\sigma^{\nu)}\alpha}q_{\alpha}}{2m_{N}} + C^{a}(q^{2})\frac{q^{\mu}q^{\nu} - \eta^{\mu\nu}q^{2}}{m_{N}}\right)u(p),
$$
\n
$$
+ C^{a}(q^{2})\frac{q^{\mu}q^{\nu} - \eta^{\mu\nu}q^{2}}{m_{N}}\right)u(p),
$$
\n
$$
J_{g}^{N} = \frac{1}{2}(A^{g}(0) + B^{g}(0)) \qquad B^{g}(0) + B^{g}(0) = 0
$$
\n
$$
= \frac{B^{g}(0) + B^{g}(0)}{B^{g}(0) + B^{g}(0)} = 0
$$
\n
$$
+ \frac{1}{2}(a_{\mu}a_{\nu} - s_{\mu\nu}q^{2})\left(e^{i\pi} \cdot e \cdot D_{0}^{a}(q^{2}) + \frac{e^{i\pi} \cdot \bar{P} \cdot e \cdot \bar{P}}{m^{2}} D_{1}^{a}(q^{2})\right) d^{a}(q^{2})}{C^{i\pi} \cdot e \cdot \bar{P} + \epsilon_{\mu} e^{i\pi} \cdot \bar{P}}\right)J^{a}(q^{2})}{\bar{f}^{g}(0) + \bar{f}^{g}(0) = 0}
$$
\n
$$
= \frac{1}{2}(A^{g}(0) + B^{g}(0)) \qquad B^{g}(0) + B^{g}(0) = 0
$$
\n
$$
+ \frac{1}{2}(c_{\mu}c_{\mu}^{i\pi} + c_{\mu}^{i\pi}c_{\nu})q^{2} - (c_{\mu}^{i\pi}q_{\mu} + c_{\nu}^{i\pi}q_{\mu})e^{i\pi} \cdot \bar{P} + (c_{\mu}q_{\mu} + c_{\nu}q_{\mu})e^{i\pi} \cdot \bar{P} - 4g_{\mu\nu}e^{i\pi} \cdot \bar{P} \cdot \bar{P} \cdot \bar{P} \cdot \bar{P})
$$
\n<

Baryon and *J*/*ψ*

Gluon AM and spin

For the $1^{--}(J/\psi)$ case, one can obtain $\bar{f}^g(0)$ in the rest frame, plus $J^g(0)$ through the approximation $J^{g}(0) \simeq J^{g}(q^{2})(1 + \frac{q^{2}}{M^{2}}) = J^{g}(q^{2}) + O(5\%)$ using $J^{g}(q^{2})$ at the smallest non-zero q^{2} . For the $(1/2)^+$ triple-heavy quark baryon, we neglect $B^g(0)$ which is small even in the light quark case, and obtain $A^g(0)$ in the rest frame. $M_{\rm{pole}}^2$ $J^g(q^2) + O(5\%)$ *J*^{*g*} (q^2) at the smallest non-zero q^2

Operator mixing

Mix with 1^{--} for the boosted 1^{+-}

Gluon AM and spin

• But for the $1^{++(-)}$ cases, not all the conditions can be used to solve $J^g(q^2)$, due to the operator mixing with the S-wave charmonium states.

Consistency check of form factor

Gluon AM and spin

Mix with 0^{-+} for the boosted 1^{++}

If we approximate $\bar{f}^g(q^2)$ with $\bar{f}^g(0)$:

• 1^{--} : $J^g(q^2)$ can be obtained through Condition I+III or II+III, or I+II+III; • 1^{++} : $J^g(q^2)$ can be obtained through Condition I+III; • 1^{+-} : $J^g(q^2)$ can be obtained through Condition II+III.

Contribution from different form factors Gluon AM and spin

- case;
- uncertainty.
- Thus $J_g^V = J^g(0) +$

• Comparing with \bar{f}^g , J^g is much larger in the 1^{--}

• In the $1^{++(-)}$ cases, both J^g and \bar{f}^g are consistent with zero, while J^g has larger

would be dominant by J^g , while J^g can not be obtained in the rest frame, which is different from the 1/2 baryon case. 1 2 $\bar{f}^g(0)$

gluon AM in different charmed hadron Gluon AM and spin

- $J_g^V = J^g(0) + \frac{1}{2} \bar{f}^g(0)$ in all the cases we studied here are small (-0.1) ; 1 2 $\bar{f}^g(0)$
- Contribution in the $(1/2)^+$ triple-heavy quark baryon case is 0.1/0.5~20% which is approximated by $A(0) = \langle x \rangle_{g}$; +
- $\langle x \rangle_g$ in the charmonium states are also ~20%, but gluon AM is 10% $(1 -)$ or even smaller $(1^{++(-)});$
- Direct calculation of $B^{g}(q^2)$ should be helpful to provide more accurate prediction on $J_g^N = -\frac{1}{2}(A^g(0) + B^g(0)).$ 1 2 $(A^g(0) + B^g(0))$

gluon spin under Coulomb gauge

Gluon AM and spin

- YBY, R. Sufian, et. al., χ QCD collaboration, PRL118(2017) 042001
- Gluon spin $E \times A$ under Coulomb gauge can also be calculated for the charmed hadron;
- \sim 10% for *J/* ψ and $(1/2)^+$ heavy quark baryon, and even smaller for the $1^{++(-)}$ states;
- More or less similar to the gluon AM.

• Discussion

 t_f (fm)

• Hadron spin and quark model

• Gluon AM and spin

Outline

$$
J = \frac{1}{2}\Delta q + L_q + J_G,
$$

When the quark mass is as heavy as $m_q = m_c \sim 1.2$ GeV:

Summary of the results

 $\Delta q=0,$ $L_q = J$.

Discussion

- Quark spin contribution agree with the quark model prediction at 90% level;
- Quark OAM obtained through the sum rule $L_q = J - S_q - J_g$ also consistent with expectation.
- Gluon contributions are not negligible in some cases which suggests that the charm quark is still not heavy enough.

Relativity of quark

Discussion

Relativity of quark

Discussion

The nucleon mass decomposition suggests that $1 - v^2 \simeq \langle H_m \rangle_H^l / \langle H_q \rangle_H \sim 0.1;$

 $M_H = T^{00} = H_E + H_m$ $H_E = \langle$ The charmonium mass decomposition suggests that $1 - v^2 \simeq \langle H_m \rangle_H / \langle H_q \rangle_H \sim 0.9;$

Similar to $\langle S_q \rangle_H / \langle S_q \rangle_H^{\text{Quarkmodel}}$.

$$
E_{E} + H_{m} + H_{g} + \frac{1}{4}(H_{a}^{q} + H_{a}^{g})
$$

\n
$$
H_{E} = \langle \int d^{3}x \overline{\psi}(\overrightarrow{D} \cdot \overrightarrow{\gamma}) \psi \rangle_{H}
$$

\n
$$
H_{q} = \langle \int d^{3}x m \overline{\psi} \psi \rangle_{H}
$$

\n
$$
H_{q} = H_{E} + H_{m}
$$

\n
$$
= \langle \int d^{3}x \overline{\psi} D_{4} \gamma_{4} \psi \rangle_{H}
$$

Relativistic effect makes nucleon to be complicated.

Summary

- Contributions of quark spin and OAM to the charmonium and also proton-like triple heavy quark state are comparable with the expectation of non-relativistic quark model;
- Provides evidence that the non-1.5 triviality of proton spin decomposition mainly arises from the relativistic effects of the light quark.
- More systematic study is on going.

 0.5 0.0 -0.5

 Δd : -41(2)%

