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Major Questions in Nuclear Physics
Spin puzzleOrigin of mass

Ortibal angular momentum
𝐿 = Ԧ𝑟 × Ԧ𝑝

Nuclear force

I n t r o d u c t i on B L F Q | qqq i | qqq i + | qqqg i C on c l u si on s

Fundamental Propert ies: Mass and Spin

• About 99% of the visible mass is

contained within nuclei

• Nucleon: composite part icles, built

from nearly massless quarks (⇠ 1%

of the nucleon mass) and gluons

• How does 99% of the nucleon mass

emerge?

• Quant itat ive decomposit ion of

nucleon spin in terms of quark and

gluon degrees of freedom is not yet

fully understood.

• To address these fundamental issues

! nature of the subatomic force

between quarks and gluons, and the

internal landscape of nucleons.
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We need to know the structure of nucleon beyond 1D
and how does it emerge from QCD ?  

ℒ𝑄𝐶𝐷 =  ത𝜓𝑞(𝑖𝐷 − 𝑚𝑞)𝜓𝑞 −
1

4
𝐺𝜇𝜈

𝛼 𝐺𝛼
𝜇𝜈/

?
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Spin Decomposition

1. In the quark model ΔΣ = 1
2. The helicity contribution can be 

measured by polarized DIS

• Ji decomposition:
1

2
=

1

2
 ΔΣ + 𝐿𝐽𝑖

𝑞
+ 𝐽𝑔

• Jaffe-Manohar Decomposition



Nonperturbative Approach
• Stationary Schrödinger equation universally describes bound-

state structure

Nonrelativistic Nonrelativistic Relativistic

atom nucleus nucleon

• Eigenstates 𝜓  encode full information of the system

𝐻 𝜓 = 𝐸|𝜓〉

5

• Major challenges from relativity: frame dependence, 
particle number not conserving…



t º x0
2 HAMILTONIAN DYNAMICS 19

Figure 1: Dirac’s three forms of Hamiltonian dynamics.

The two four-volume elements are related by the Jacobian J (x) = ||∂x/ ∂x||, part icularly

d4x = J (x) d4x. We shall keep track of the Jacobian only implicit ly. The three-volume

element dω0 is t reated correspondingly.

All the above considerat ions must be independent of this reparametrizat ion. The

fundamental expressions like the Lagrangian can be expressed in terms of either x or x.

There is however one subt le point . By matter of convenience one defines the hypersphere

as that locus in four-space on which one sets the ‘init ial condit ions’ at the same ‘init ial

t ime’, or on which one ‘quant izes’ the system correspondingly in a quantum theory. The

hypersphere is thus defined as that locus in four-space with the same value of the ‘t ime-

like’ coordinate x0, i.e. x0(x0, x) = const. Correspondingly, the remaining coordinates

are called ‘space-like’ and denoted by the spat ial three-vector x = (x1, x2, x3). Because

of the (in general) more complicated metric, cuts through the four-space characterized

by x0 = const are quite different from those with x0 = const. In generalized coordinates

the covariant and contravariant indices can have rather different interpretat ion, and one

must be careful with the lowering and rising of the Lorentz indices. For example, only

∂0 = ∂/ ∂x0 is a ‘t ime-derivat ive’ and only P0 a ‘Hamiltonian’, as opposed to ∂0 and P0

which in general are completely different objects. The actual choice of x(x) is a matter

of preference and convenience.

2D Forms of H amilt onian D ynamics

Obviously, one has many possibilit ies to parametrize space-t ime by introducing some

generalized coordinates x(x). But one should exclude all those which are accessible by a
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of the (in general) more complicated metric, cuts through the four-space characterized

by x0 = const are quite different from those with x0 = const. In generalized coordinates

the covariant and contravariant indices can have rather different interpretat ion, and one
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∂0 = ∂/ ∂x0 is a ‘t ime-derivat ive’ and only P0 a ‘Hamiltonian’, as opposed to ∂0 and P0

which in general are completely different objects. The actual choice of x(x) is a matter

of preference and convenience.

2D Forms of H amilt onian Dynamics

Obviously, one has many possibilit ies to parametrize space-t ime by introducing some

generalized coordinates x(x). But one should exclude all those which are accessible by a

i
¶

¶t
j(t) = H j(t) i

¶

¶x+
j(x+ ) =

1

2
P- j(x+ )

P0 = m2 + P2
P- =

m2 + P̂2

P+

𝑥1, 𝑥2, 𝑥3

𝑃0, 𝑃

𝑥− = 𝑥0 − 𝑥3,
𝑥⊥ = 𝑥1,2

𝑃− = 𝑃0 − 𝑃3,
𝑃+ = 𝑃0 + 𝑃3,𝑃⊥ = 𝑃1,2

Main advantage:

• Simple vacuum
• Frame-independent light-front wave 

functions
• Minkowski spacetime
• No square roots in dispersion relation

Light-front Quantization
Equal time quantization Light-front quantization [Dirac, 1949]

Φ 𝛾+
𝑥, 𝑄2

= න
𝑑𝑧−

8𝜋
 ฬ𝑒

𝑖𝑥𝑃+𝑧−

2 𝑃, Λ ത𝜓 𝑥 𝛾+𝜓 0 𝑃, Λ
𝑥+=𝑥⊥=0



Basis Light-Front Quantization
➢ Hamiltonian eigenvalue equation:

𝑃− ۧ𝛽 = 𝑃𝛽
− ۧ𝛽

o 𝑷−: Light-Front Hamiltonian
o | ۧ𝜷 : Eigenstates
o 𝑷𝜷

−: Eigenvalues for eigenstates

[Vary, et.al, 2010] 

| ۧ𝛽nucleon = | ۧ𝑞𝑞𝑞 + 𝑞𝑞𝑞𝑔 + 𝑞𝑞𝑞 𝑞 ത𝑞 + ⋅⋅⋅⋅⋅⋅Fock sector expansion:

Single particle basis
in |𝑞𝑞𝑞ۧ:

𝛼 = |𝑛1, 𝑚1, 𝑛2, 𝑚2, 𝑛3, 𝑚3ۧ

2-dimension harmonic 
oscillator

⨂ |𝑘1
+, 𝑘2

+, 𝑘3
+ۧ⨂|𝜆1, 𝜆2, 𝜆3, 𝐶ۧ

Discretized longitudinal 
momentum

Helicity and color



𝑖

(2𝑛𝑖 + 𝑚𝑖 + 1) ≤ 𝑁max 

𝑖

𝑘𝑖
+ = 𝐾max

➢ Basis setup:

➢ Advantages:
       1. Rotational symmetry in transverse plane
       2. Exact factorization between center-of-mass motion and intrinsic motion
       3. Harmonic oscillator basis supplies correct infrared behavior for hadrons

Λ = 

𝑖

(𝜆𝑖 + 𝑚𝑖)



Light-front Hamiltonian
➢ QCD light-front Hamiltonian can be derived from QCD Lagrangian:

𝑃𝑄𝐶𝐷
− = 𝐻𝐾 + 𝐻𝐼ℒ𝑄𝐶𝐷 = ത𝜓 𝑖𝐷 − 𝑚 𝜓 −

1

4
𝐺𝜇𝜈

𝛼 𝐺𝛼
𝜇𝜈/

𝐻𝐾 =

𝐻𝐼 =

𝜓: quark field operator
𝐴𝜇

𝑎: gluon field operator

𝐴+ = 0



Progress toward First Principles

➢ GPDs:

➢ TMDs:                  

N =| ۧ𝑞𝑞𝑞 + 𝑞𝑞𝑞𝑔 + 𝑞𝑞𝑞 𝑢 ത𝑢 + 𝑞𝑞𝑞 𝑑 ҧ𝑑 + 𝑞𝑞𝑞 𝑠 ҧ𝑠 + ⋯

➢ Wave Functions:

11
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➢ Higher-twist Distribution (GPD,TMD,DPD):

[PRD,109,034031] (2024)

[PLB,855 138831] (2024)

[PLB,855 138829] (2024)

[arXiv:2410.11574] (2024)

➢ Gravitational Form Factors:
[PRD,110,056027] (2024)



Full BLFQ
ۧ𝑁 → ۧ𝑞𝑞𝑞 + 𝑞𝑞𝑞𝑔 + 𝑞𝑞𝑞𝑢 ത𝑢 + 𝑞𝑞𝑞𝑑 ҧ𝑑 + 𝑞𝑞𝑞𝑠 ҧ𝑠 + 𝑞𝑞𝑞𝑔𝑔

𝑷− = 𝑯𝑲.𝑬. + 𝑯𝑰𝒏𝒕𝒆𝒓𝒂𝒄𝒕

𝑯𝑲.𝑬. = 

𝒊

𝒑𝒊
𝟐 + 𝒎𝒒

𝟐

𝒑𝒊
+

𝑯𝑰𝒏𝒕𝒆𝒓𝒂𝒄𝒕 = 𝒈ഥ𝝍 𝜸𝝁𝑻𝒂 𝝍 𝑨𝝁
𝒂 +

𝒈𝟐𝑪𝑭

𝟐
 𝒋+

𝟏

𝒊𝝏+ 𝟐 𝒋+ +
𝒈𝟐𝑪𝑭

𝟐
 ഥ𝝍𝜸𝝁𝑨𝝁

𝜸+

𝒊𝝏+ 𝑨𝝂𝜸𝝂𝝍

   −𝒈𝟐𝑪𝑭
ഥ𝝍𝜸+𝝍

𝟏

𝒊𝝏+ 𝟐 𝒊𝝏+𝑨𝝁
𝒂𝑨𝒃

𝝁
+ 𝒊𝒈𝒇𝒂𝒃𝒄𝒊𝝏𝝁𝑨𝒂

𝝂𝑨𝝁
𝒃𝑨𝝂

𝒄



Fock Sector Decomposition

Leading Fock sector
𝑞𝑞𝑞 ∼ 58.489%

Next leading Fock sector
𝑞𝑞𝑞𝑔 ∼ 40.154%

Next next leading
Fock sectors

𝑞𝑞𝑞 𝑢 ത𝑢 ∼ 0.093%

𝑞𝑞𝑞 𝑑 ҧ𝑑 ∼ 0.096%

𝑞𝑞𝑞 𝑠 ҧ𝑠 ∼ 0.085%
𝑞𝑞𝑞 𝑔𝑔  ~ 1.083%

ൿ𝑃𝑏𝑎𝑟𝑦𝑜𝑛 → ۧ𝑞𝑞𝑞 + 𝑞𝑞𝑞𝑔 + 𝑞𝑞𝑞𝑢 ത𝑢 + 𝑞𝑞𝑞𝑑 ҧ𝑑 + 𝑞𝑞𝑞𝑠 ҧ𝑠 + 𝑞𝑞𝑞𝑔𝑔

𝒎𝒖 𝒎𝒅 𝒎𝒔 𝒎𝒇 𝒈 𝒃 𝒃𝒊𝒏𝒔𝒕

0.5 GeV 0.45 GeV 0.6 GeV 3.0 GeV 2.1 0.6 GeV 3.0 GeV

𝑞𝑞𝑞 𝑞 ത𝑞  ~ 3 color singlet state

𝑞𝑞𝑞 𝑔𝑔  ~ 6 color singlet state

2 octet ⨂ octet

1 singlet ⨂ singlet

4 octet ⨂ octet

1 singlet ⨂ singlet

1 decuplet ⨂ octet ⨂ octet

Truncation parameter: 𝑁max = 7 and 𝐾max = 10



• Elastic scattering of proton

𝑒 𝑝 + ℎ 𝑃 → 𝑒 𝑝′ + ℎ(𝑃′)

• Elastic electron scattering 
established the extended nature of 
the proton (proton radius).

• Fourier transformation of these form factors provide spatial distributions 
(charge and magnetization distributions).

[ R. Hofstadter 1961 ]

Electromagnetic Form Factors

Dirac Form Factor Pauli Form Factor



Nucleon Form Factors

Preliminary results

• BLFQ results qualitatively agree  with the experimental data for Dirac and Pauli FFs

𝑟𝑃
𝑐 = 0.822 fm

𝑟𝑃
𝑀 = 0.827 fm

𝜇𝑝 = 2.34 (𝐸𝑋𝑃: 2.79)



Parton Distribution Functions (PDF)
➢Deep Inelastic Scattering (SLAC 1968)

𝑒 𝑝 + ℎ 𝑃 = 𝑒′ 𝑝′ + 𝑋(𝑃′)

➢ Parton distribution functions (PDFs) are extracted from 

DIS processes.

➢ PDFs encode the distribution of longitudinal momentum and 

polarization carried by the constituents

Discovery of spin ½ quarks 
and partonic structure

𝑋

𝑋

Φ 𝛾+
𝑥, 𝑄2 = න

𝑑𝑧−

8𝜋
 ฬ𝑒

𝑖𝑥𝑃+𝑧−

2 𝑃, Λ ത𝜓 𝑥 𝛾+𝜓 0 𝑃, Λ
𝑥+=𝑥⊥=0



All results at the initial scale

Unpolarized Parton Distribution Function
➢Parton distribution functions with five Fock sectors

Preliminary results

• Endpoint behavior improves with |𝑞𝑞𝑞𝑔𝑔ۧ Fock sector included

• Five-particle sector contributions are small due to Fock sector truncation (no 
|𝑞𝑞𝑞 𝑞 ത𝑞 𝑔ۧ |𝑞𝑞𝑞 𝑔𝑔𝑔ۧ), 

• Qualitative behavior agree with experimental results



All results at the initial scale

Unpolarized PDFs
➢Parton distribution functions with five Fock sectors

Preliminary results

• Endpoint behavior improves with |𝑞𝑞𝑞𝑔𝑔ۧ Fock sector included

• Five-particle sector contributions are small due to Fock sector truncation (no 
|𝑞𝑞𝑞 𝑞 ത𝑞 𝑔ۧ, |𝑞𝑞𝑞 𝑔𝑔𝑔ۧ), 

• Qualitative behavior agree with experimental results



Helicity PDFs
➢ Helicity PDFs with five particle parton distribution

Sea asymmetry qualitatively agrees with 
JAM results 

Preliminary results

ΔΣ𝑢 = 0.84

Δ𝐺 = 0.094ΔΣ𝑑 = −0.19

ΔΣ = 0.653



Transversity PDFs

Preliminary results Preliminary results

• 𝑢 has opposite sign of 𝑑

• Asymmetry between ത𝑢 , ҧ𝑑, and ҧ𝑠 

• Qualitatively consistent with the experimental data

Tensor Charge: 𝛿𝑢 = 0.91 , 𝛿𝑑 = −0.10 At initial scale



Generalized Parton Distribution Functions

𝑡 = Δ2, 𝑥 =
𝑘+

𝑃+
, 𝜻 =

𝚫+

𝑷+
= 𝟎

• With increasing  momentum transfer (𝑡), 
peaks of distributions shift to larger 𝑥

• Encode the information about three-
dimensional spatial structure the spin and 
orbital angular momentum

𝑏
𝐹𝑇

 Δ⊥

➢ Deeply Virtual Compton Scattering (DVCS) 



Generalized Parton Distribution Functions



Generalized Parton Distribution Functions



Generalized Parton Distribution Functions

𝑡 = Δ2, 𝑥 =
𝑘+

𝑃+
, 𝜻 =

𝚫+

𝑷+
= 𝟎

➢ Polarized GPDs for valence quark 
and gluon at zero skewness



Generalized Parton Distribution Functions

𝑡 = Δ2, 𝑥 =
𝑘+

𝑃+
, 𝜻 =

𝚫+

𝑷+
= 𝟎

➢ Polarized GPDs for sea quark at zero Skewness



Spin Decomposition

Sea quark Contribution: 0.059% Valence and gluon contribution

𝑢: 64.34%

𝑑: 26.20%

𝑔: 9.40%

𝑠:0.019%

ത𝑢:0.020%
ҧ𝑑:0.020%

At the Initial scale

𝐽𝑞,𝑔 = න 𝑑𝑥
𝑥

2
[𝐻𝑞,𝑔(𝑥, 0,0) + 𝐸𝑞,𝑔 𝑥, 0,0 ]

➢ Using generalized parton distributions to calculate the angular momentum 

1

2
= 𝐽𝑢 + 𝐽𝑑 + 𝐽𝑔 + 𝐽𝑠𝑒𝑎

➢ Small sea quark contributions at initial scale compared to valence and gluon



Spin Decomposition
➢ Orbital angular momentum distribution at light-cone gauge (𝐴+ = 0)

෨𝐿 𝑏 =
1

2
න𝑑𝑥 𝑥(𝐻 𝑥, 𝑏 + 𝐸 𝑥, 𝑏 ) − ෩𝐻(𝑥, 𝑏)𝐿𝑞,𝑔

𝑧 𝑏 = −
𝑠𝑧

2
𝑏

𝑑 ෨𝐿(𝑏)

𝑑 𝑏 

𝐽𝑧 𝑏⊥ = 𝐿𝑧 𝑏⊥ + ⟨𝑆𝑧ۧ(𝑏⊥)

➢ In the light-cone gauge, the orbital angular momentum can be extracted 



Conclusions

• BLFQ: a non-perturbative Hamiltonian approach 
based on QCD

• | ۧ𝑞𝑞𝑞 + 𝑞𝑞𝑞𝑔 + 𝑞𝑞𝑞 𝑞 ത𝑞 + 𝑞𝑞𝑞 𝑔𝑔  Fock sectors 
included

• Incorporates all QCD interactions other than four-gluon 
interactions

• Results qualitatively agree with global fitting
• Utilizes 3D structures to analyze spin decomposition

• Progressing towards a First-Principles Approach



Outlook
Current status

Full QCD interaction

Fock sector expansion
𝑞𝑞𝑞 𝑞 ത𝑞 𝑔  and 𝑞𝑞𝑞 𝑔𝑔𝑔 ……

Deutron calculation
𝑞𝑞𝑞 𝑞𝑞𝑞 + 𝑞𝑞𝑞 𝑞𝑞𝑞 𝑔

EMC effect

Intrinsic charm Sea asymmetry Origin of spin and mass

I n t r o d u c t i on B L F Q | qqq i | qqq i + | qqqg i C on c l u si on s

Fundamental Propert ies: Mass and Spin

• About 99% of the visible mass is

contained within nuclei

• Nucleon: composite part icles, built

from nearly massless quarks (⇠ 1%

of the nucleon mass) and gluons

• How does 99% of the nucleon mass

emerge?

• Quant itat ive decomposit ion of

nucleon spin in terms of quark and

gluon degrees of freedom is not yet

fully understood.

• To address these fundamental issues

! nature of the subatomic force

between quarks and gluons, and the

internal landscape of nucleons.

1
P i c t u r es ( t op t o b ot t om ) t ak en f r om A . Si gn or i ’ s t a l k , J . Q u i t a l k , C . L or ce’ s t a l k
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Thank you!
See you in 
Huizhou☺
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