Proton Spin Decomposition From Basis Light-Front Quantization

Xingbo Zhao

With

Chandan Mondal, Siqi Xu, Yang Li, James P. Vary,

Hongyao Yu, Zhi Hu, Zhiming Zhu

Institute of Modern Physics, Chinese Academy of Science

The 12th Circum-Pan-Pacific Symposium on High Energy Spin Physics Hefei, China, 11/11/2024

Outline

- **B**asis Light-Front Quantization (**BLFQ**)
 - Light-front Quantization
 - QCD Light-front Hamiltonian
 - BLFQ Procedure
- Application to Proton
 - Form Factors (FFs)
 - Parton Distribution Functions (PDFs)
 - Generalized Parton Distribution Functions (GPDs)
- Conclusion and Outlook

Major Questions in Nuclear Physics

$$\mathcal{L}_{QCD} = \left(\bar{\psi}_q (i D - m_q) \psi_q \right) - \frac{1}{4} G^{\alpha}_{\mu\nu} G^{\mu\nu}_{\alpha}$$

Spin Decomposition

- 1. In the quark model $\Delta \Sigma = 1$
- 2. The helicity contribution can be measured by polarized DIS
- Ji decomposition:

$$\frac{1}{2} = \frac{1}{2} \Delta \Sigma + L_{Ji}^q + J_g$$

Nonperturbative Approach

 Stationary Schrödinger equation universally describes boundstate structure

$$H|\psi\rangle = E|\psi\rangle$$

• Eigenstates $|\psi
angle$ encode full information of the system

Nonrelativistic

atom

Nonrelativistic

nucleus

Relativistic

nucleon

 Major challenges from relativity: frame dependence, particle number not conserving...

Light-front Quantization

Basis Light-Front Quantization

Hamiltonian eigenvalue equation: >

[Vary, et.al, 2010]

- $P^{-}|\beta\rangle = P_{\beta}^{-}|\beta\rangle$
- **P**⁻: Light-Front Hamiltonian
- \circ | β : Eigenstates
- $\circ P_{\beta}^{-}$: Eigenvalues for eigenstates

momentum

Basis setup:

Fock sector expansion: $|\beta_{nucleon}\rangle = |qqq\rangle + |qqqg\rangle + |qqqq\bar{q}\rangle + \cdots$

Single particle basis $|\alpha\rangle = |n_1, m_1, n_2, m_2, n_3, m_3\rangle \otimes |k_1^+, k_2^+, k_3^+\rangle \otimes |\lambda_1, \lambda_2, \lambda_3, C\rangle$ in $|qqq\rangle$: 2-dimension harmonic Discretized longitudinal Helicity and color oscillator

$$\sum_{i} (2n_i + |m_i| + 1) \le N_{\max} \qquad \sum_{i}$$

$$\sum_{i} k_i^+ = K_{\max} \qquad \Lambda = \sum_{i} (\lambda_i + m_i)$$

\succ Advantages:

- 1. Rotational symmetry in transverse plane
- 2. Exact factorization between center-of-mass motion and intrinsic motion
- 3. Harmonic oscillator basis supplies correct infrared behavior for hadrons

Light-front Hamiltonian

QCD light-front Hamiltonian can be derived from QCD Lagrangian:

Progress toward First Principles

 $|N\rangle = |qqq\rangle + |qqqg\rangle + |qqq u\bar{u}\rangle + |qqq d\bar{d}\rangle + |qqq s\bar{s}\rangle + \cdots$

> Wave Functions:

[PRD,102,016008] (2019) [PRD,108 9, 094002] (2023) [arXiv:2408.11298] (2024)

➢ GPDs:

[PRD,104,094036] (2021) [PLB,847,138305] (2023)

[PRD,105,094018] (2022) [PRD,110.056027] (2024)

[PRD,109,014015] (2024)

[arXiv:2408.09988] (2024)

[PLB,855,138809] (2024)

> TMDs:

[PLB,833,137360] (2022) [PLB,855 138831] (2024) [PRD,108,036009] (2023)

Higher-twist Distribution (GPD,TMD,DPD):

[PRD,109,034031] (2024) [PLB,855 138829] (2024) [arXiv:2410.11574] (2024)

Gravitational Form Factors: [PRD,110,056027] (2024)

Full BLFQ

 $|N\rangle \rightarrow |qqq\rangle + |qqqqg\rangle + |qqqu\bar{u}\rangle + |qqqd\bar{d}\rangle + |qqqs\bar{s}\rangle + |qqqgg\rangle$

 $P^- = H_{K.E.} + H_{Interact}$

Fock Sector Decomposition

$\left| P_{baryon} \right\rangle \rightarrow \left| qqqq \right\rangle + \left| qqqqg \right\rangle + \left| qqqu\bar{u} \right\rangle + \left| qqqd\bar{d} \right\rangle + \left| qqqs\bar{s} \right\rangle + \left| qqqgg \right\rangle$

m _u	m _d	m _s	m_f	g	b	b _{inst}
0.5 GeV	0.45 GeV	0.6 GeV	3.0 GeV	2.1	0.6 GeV	3.0 GeV

Truncation parameter: $N_{\text{max}} = 7$ and $K_{\text{max}} = 10$

Electromagnetic Form Factors

Elastic scattering of proton

[R. Hofstadter 1961] $e(p) + h(P) \rightarrow e(p') + h(P')$

- Elastic electron scattering established the extended nature of the proton (proton radius).
- Fourier transformation of these form factors provide spatial distributions (charge and magnetization distributions).

$$\langle N(p')|J^{\mu}(0)|N(p)\rangle = \bar{u}(p')\left[\gamma^{\mu}F_{1}(q^{2}) + \frac{i\sigma^{\mu\nu}}{2m_{N}}q_{\nu}F_{2}(q^{2})\right]u(p)$$

Dirac Form Factor Pauli Form Factor

Nucleon Form Factors

$$\langle N(p')|J^{\mu}(0)|N(p)\rangle = \bar{u}(p')\left[\gamma^{\mu}F_{1}(q^{2}) + \frac{i\sigma^{\mu\nu}}{2m_{N}}q_{\nu}F_{2}(q^{2})\right]u(p)$$

Preliminary results

• BLFQ results qualitatively agree with the experimental data for Dirac and Pauli FFs

Parton Distribution Functions (PDF)

Deep Inelastic Scattering (SLAC 1968)

$$e(p) + h(P) = e'(p') + X(P')$$

♦ Localized probe:

$$Q^2 = -(p - p')^2 \gg 1 \text{ fm}^{-2}$$
$$\stackrel{1}{\longrightarrow} \frac{1}{Q} \ll 1 \text{ fm}$$

Discovery of spin ½ quarks and partonic structure

Parton distribution functions (PDFs) are extracted from DIS processes.

$$\Phi^{[\gamma^+]}(x,Q^2) = \int \frac{dz^-}{8\pi} e^{\frac{ixP^+z^-}{2}} \langle P, \Lambda | \bar{\psi}(x)\gamma^+\psi(0) | P, \Lambda \rangle \Big|_{x^+=x^\perp=0}$$

PDFs encode the distribution of longitudinal momentum and polarization carried by the constituents

Unpolarized Parton Distribution Function

Parton distribution functions with five Fock sectors

- Qualitative behavior agree with experimental results
- Endpoint behavior improves with $|qqqqqg\rangle$ Fock sector included
- Five-particle sector contributions are small due to Fock sector truncation (no $|qqq q\bar{q} g\rangle |qqq ggg\rangle$),

Preliminary results

All results at the initial scale

Unpolarized PDFs

Parton distribution functions with five Fock sectors

- Qualitative behavior agree with experimental results
- Endpoint behavior improves with $|qqqgg\rangle$ Fock sector included
- Five-particle sector contributions are small due to Fock sector truncation (no $|qqq \ q\bar{q} \ g\rangle$, $|qqq \ ggg\rangle$),

Preliminary results

All results at the initial scale

Helicity PDFs

Helicity PDFs with five particle parton distribution

Transversity PDFs

- u has opposite sign of d
- Qualitatively consistent with the experimental data
- Asymmetry between \bar{u} , \bar{d} , and \bar{s}

Tensor Charge: $\delta u = 0.91$, $\delta d = -0.10$ At initial scale

Deeply Virtual Compton Scattering (DVCS)

- Encode the information about threedimensional spatial structure the spin and orbital angular momentum
- With increasing momentum transfer (*t*), peaks of distributions shift to larger *x*

$$t = \Delta^2, x = \frac{k^+}{P^+}, \zeta = \frac{\Delta^+}{P^+} = 0 \qquad b \xrightarrow{FT} \Delta_\perp$$

Polarized GPDs for valence quark and gluon at zero skewness $t = \Delta^2, x = \frac{k^+}{P^+}, \zeta = \frac{\Delta^+}{P^+} = 0$ 0.3 0.2 0.1 0.0 0.2 0.4 x 0.6 $\tilde{H}^{d}(\mathbf{x},0,\mathbf{t})$ 0.0

 $-t [GeV^2]$

-0.5

0.2

0.4

X

0.6

0.8

0

 $\tilde{H}^{g}(\mathbf{x},0,\mathbf{t})$

Spin Decomposition

Using generalized parton distributions to calculate the angular momentum

$$J_{q,g} = \int dx \, \frac{x}{2} [H_{q,g}(x,0,0) + E_{q,g}(x,0,0)]$$
$$\frac{1}{2} = J_u + J_d + J_g + J_{sea}$$

Small sea quark contributions at initial scale compared to valence and gluon

Spin Decomposition

> Orbital angular momentum distribution at light-cone gauge ($A^+ = 0$)

 $\langle J^z \rangle (b_\perp) = \langle L^z \rangle (b_\perp) + \langle S^z \rangle (b_\perp)$

$$\langle L_{q,g}^z \rangle(b) = -\frac{s^z}{2} b \frac{d \tilde{L}(b)}{d b} \qquad \qquad \tilde{L}(b) = \frac{1}{2} \int dx \, x(H(x,b) + E(x,b)) - \tilde{H}(x,b)$$

In the light-cone gauge, the orbital angular momentum can be extracted

Conclusions

- BLFQ: a non-perturbative Hamiltonian approach based on QCD
- $|qqq\rangle + |qqqg\rangle + |qqqq\bar{q}\rangle + |qqq\bar{q}g\rangle$ Fock sectors included
- Incorporates all QCD interactions other than four-gluon interactions
- Results qualitatively agree with global fitting
- Utilizes 3D structures to analyze spin decomposition
- Progressing towards a First-Principles Approach

Outlook

The Institute of Modern Physics, Chinese Academy of Sciences, Huizhou Campus, China.

Movember 25-29, 2024

Physics Topics and Tools

- » Physics of EIC and EicC
- » Hadron spectroscopy and reactions
- » Hadron/nuclear structure
- » Spin physics
- » Relativistic many-body physics
- » QCD phase structure
- » Light-front field theory
- » AdS/CFT and holography
- » Nonperturbative QFT methods
- » Effective field theories
- » Lattice field theories
- » Quantum computing
- » Present and future facilities

International Advisory Committee

- » Stanley J. Brodsky (SLAC)
- » Ho-Meoyng Choi (Kyungpook National U.)
- » Stanislaw D. Glazek (Warsaw U.)
- » Chueng-Ryong Ji (NCSU)
- » Dayashankar Kulshreshtha (Delhi U.)
- » Gerald A. Miller (INT & U. Washington)
- » Wally Meinitchouk (TJNAF)
- » Barbara Pasquini (Pavia U.)
- » Wayne Nicholas Polyzou (U. of Iowa)
- » Nico G. Stefanis (Ruhr U.)

- » Wojciech Broniowski (JKU & Cracow, INP) » Tobias Frederico (ITA)
- » John R. Hiller (Idaho U.)
- » Vladimir Karmanov (Lebedev Inst.)
- » Cédric Lorcé (Ecole Polytechnique)
- » Anuradha Misra (Mumbai U.)
- » Teresa Peña (IST & Lisboa U.)
- » Giovanni Salmè (INFN Roma)
- » James P. Vary (lowa State U.)

Local Organizing Committee

- » Xingbo Zhao (IMP,chair)
- » Jiangshan Lan (IMP,co-chair)
- » Chandan Mondal (IMP)
- » Satvir Kaur (IMP)
- » Siqi Xu (IMP)
- » Yair Mulian (IMP)
- » Yuxiang Zhao (IMP)

Registration and abstract submission opens : 1st April, 2024 Abstract submission deadline : 15th November, 2024 Registration closes : 15th November, 2024

lightcone2024@impcas.ac.cn

https://indico.impcas.ac.cn/event/55

Thank you! See you in Huizhou©