Collision corrections to fermion spin polarization in a hot electron plasma

Shuo Fang (方 硕)

University of Science and Technology of China (USTC)

Based on: <u>2204.11519;</u> <u>2408.09877</u>

The 12th Circum-Pan-Pacific Symposium on High Energy Spin Physics

November 8-12, 2024 at Hefei, China

- Spin phenomena in heavy ion collisions
- Quantum kinetic theory and spin transport
- Collision corrections by solving (spin) Boltzmann
 equations
- Summary

- Spin phenomena in heavy ion collisions
- Quantum kinetic theory and spin transport
- Collision corrections by solving (spin) Boltzmann
 equations
- Summary

Spin phenomena in heavy ion collisions

Strong vorticity via spin orbital coupling

Strong color field and their correlations

Z. T. Liang, X. N. Wang, PRL(2005); PLB(2005) [STAR Collaboration], Nature 548, 62(2017); Nature 614,244(2023) F. Becattini, M. A. Lisa, ARNPS(2020); F. Becattini, et al. IJMPE(2024)

Shuo Fang(方硕), Collision corrections to spin polarization, 2024.11.11

CSpin2024

Spin phenomena (a): Global polarization and alignment

[STAR Collaboration], Nature 548, 62(2017); F. Becattini, M. A. Lisa, ARNPS (2020)

Spin polarization: Measuring the **spin-orbital coupling**;

Spin alignment: Measuring the **correlations** of strong force /glasma field **fluctuations**.

[STAR Collaboration], Nature (2023); [ALICE Collaboration], PRL (2023); Sheng, Wang, Wang, PRD(2020) Sheng, Oliva, Liang, Wang, Wang, PRL (2023); PRD(2024); Kumar, Muller, Yang, 2212.13354; 2304,04181; Muller, Yang, PRD(2022);

Spin phenomena (b): Local polarization

Experimental data: [STAR Collaboration], PRL(2019)

• A shear-induced polarization? Parameter dependence?

Local polarization: Spin **spectrum.**

in-plane

✓ "Spin Hall effect" in HIC

Fu, Liu, Pang et al, PRL. 127 (2021); Becattini ,et al, PRL. 127 (2021) Yi , Pu, and Yang, PRC. 104 (2021)

theory

CSpin2020

Resolving "Sign puzzle" from quantum kinetic theory

Sign puzzle in local polarization urges us to go beyond the local equilibrium regime.

Hidaka, Pu, Wang, Yang, PPNP(2022)

- Spin phenomena in heavy ion collisions
- Quantum kinetic theory and spin transport
- Collision corrections by solving (spin) Boltzmann
 equations
- Summary

QKT and spin Boltzmann equation (a)

We define the gauge invariant 2-point Wigner function for fermions,

$$S_{\alpha\beta}^{<}(x,p) = -\int d^{4}y e^{-ip \cdot y} \langle : \overline{\psi}_{\beta}(x+\frac{y}{2}) e^{\frac{y}{2} \cdot \overleftarrow{D}(x)} \otimes e^{-\frac{y}{2} \cdot \overrightarrow{D}(x)} \psi_{\alpha}(x-\frac{y}{2}) : \rangle$$

For massless fermions, in the Clifford components

$$S = \mathcal{V}_{\mu}\gamma^{\mu} + \mathcal{A}_{\mu}\gamma^{5}\gamma^{\mu},$$

Based on the quantum nature of spin polarization, we adopt the power counting,

$$\mathcal{V}^{\mu}\sim\mathcal{O}(\hbar^{0}),\mathcal{A}^{\mu}\sim\mathcal{O}(\hbar^{1}),$$

Phase-space **particle current** Phase-space **spin current**

(C.) (C_0) to-iB

Imt

(C₊)

Along the Schwinger-Keldysh contour, one derives the Kadanoff-Baym equations up to $O(\hbar)$, $p_{\mu}\gamma^{\mu}S^{<} + \frac{i\hbar}{2}\gamma^{\mu}\partial_{X} \ _{\mu}S^{<} = \frac{i\hbar}{2}(\Sigma^{<}S^{>} - \Sigma^{>}S^{<}),$

$$p_{\mu}S^{<}\gamma^{\mu} - \frac{i\hbar}{2}\partial_{X,\mu}S^{<}\gamma^{\mu} = -\frac{i\hbar}{2}(S^{>}\Sigma^{<} - S^{<}\Sigma^{>}), \qquad \Sigma: \text{Self-energies}$$

Blaizot, Iancu, Phys. Rept.(2002); Hidaka, Pu, Yang, PRD(2017);

QKT and spin Boltzmann equation (b)

- Under quasi-particle approximations, we can perturbatively solve the Wigner functions.
- Distribution functions of vector and axial charge The perturbative solutions are $S^{\mu\nu}_{(n)} = \frac{\epsilon^{\mu\nu\rho\sigma} p_{\rho} n_{\sigma}}{2n+n},$ $\mathcal{V}^{\leq,\mu}(X,p) = 2\pi p^{\mu} \delta(p^2) f_{\mathrm{V}}^{\leq}(X,p),$ $\mathcal{A}^{\leq,\mu}(X,p) = 2\pi p^{\mu} \delta(p^2) f_{\mathrm{A}}^{\leq}(X,p) + 2\pi \hbar \delta(p^2) S_{(n)}^{\mu\alpha} \left(\partial_{\alpha}^X f_{\mathrm{V}}^{\leq}(X,p) - C_{\mathrm{V},\alpha}[f_{\mathrm{V}}^{\leq}] \right)$
- The kinetic equations are as follows:

 $\partial_{X,\mu} \mathcal{V}^{<,\mu} = \Sigma_V^{<} \cdot \mathcal{V}^{>} - \Sigma_V^{>} \cdot \mathcal{V}^{<} \equiv 2\pi \delta(p^2) \mathcal{C}_V,$ Boltzmann eq. : **Spin** Boltzmann eq. : $\partial_{X,\mu} \mathcal{A}^{<,\mu} = \Sigma_{V}^{<} \cdot \mathcal{A}^{>} - \Sigma_{V}^{>} \cdot \mathcal{A}^{<} - \Sigma_{A}^{<} \cdot \mathcal{V}^{>} + \Sigma_{A}^{>} \cdot \mathcal{V}^{<} \equiv 2\pi \delta(p^{2}) \mathcal{C}_{A}.$

It has been proven the following distributions make vector and axial collision kernels zero:

 $f_{\rm A,leq}^{<}(x,p) = -\frac{n}{2} f_{V,\rm leq}^{<}(x,p) f_{V,\rm leq}^{>}(x,p) \omega_{\mu\nu}^{s} S_{(u)}^{\mu\nu}(x,p),$ Y. Hidaka, S. Pu, D.-L. Yang, PRD(2018); D.-L. Yang, K. Hattori, Y. Hidaka, JHEP(2020); SF. S. Pu, D.-L. Yang, PRD(2022)

Shuo Fang (方硕), Collision corrections to spin polarization, 2024.11.11

= Thermal vorticity

Off-eq. corrections to spin polarization

Spin polarization spectrum is directly related to axial vector WF $\mathcal{A}^{<,\mu}$,

Becattini, et al. Annals Phys.(2013) Fang, Pang, Wang, Wang, PRC(2016)

- We expect to investigate the near-equilibrium spin polarization depending on f_V :
 - > Scenario (I): Vector charge (near) out of equilibrium:

$$\delta \mathcal{A}_{(\mathrm{I})}^{<,\mu}(X,p) = 2\pi p^{\mu} \delta(p^2) \delta f_{\mathrm{A}}^{<}(X,p) - 2\pi \hbar \delta(p^2) S_{(u)}^{\mu\alpha} C_{\mathrm{V},\alpha} \delta f_{\mathrm{V}}^{<} + \mathcal{O}(\partial^2).$$

 $\mathcal{P}^{\mu}(t;\mathbf{p}) = \hbar \frac{\int_{\Sigma} d\Sigma \cdot p \int \frac{dp_0}{2\pi} \mathcal{A}^{<,\mu}(x,p)}{2m \int_{\Sigma} \int \frac{dp_0}{2\pi} d\Sigma \cdot \mathcal{V}^{<}(x,p)}. \quad \mathcal{A}^{<,\mu} = \mathcal{A}_{\text{leq}}^{<,\mu} + \mathcal{A}_{\text{collision}}^{<,\mu}$

μ

р

> Scenario (II): Vector charge in equilibrium:

 $\delta \mathcal{A}_{(\mathrm{II})}^{<,\mu}(X,p) = 2\pi p^{\mu} \delta(p^2) \delta f$

Solving Boltzmann eq.

Our focus

Solving Spin Boltzmann eq.

. It is convenient to consider the elastic scattering process:

SF, S. Pu, D.-L. Yang, PRD(2022) SF, S. Pu, 2408.09877

- Spin phenomena in heavy ion collisions
- Quantum kinetic theory and spin transport
- Collision corrections by solving (spin) Boltzmann
 equations
- Summary

Novel matching condition

Matching condition mapping distribution moments to hydrodynamical quantities, defining thermodynamical variables: G.S. Denicol, D. Rischke, Lecture Notes in Phys. (2022)

$$\varepsilon = \varepsilon_0(\alpha_0, \beta_0) = \langle E_{\mathbf{p}}^2 \rangle_0, \quad n = n_0(\alpha_0, \beta_0) = \langle E_{\mathbf{p}} \rangle_0, \quad \Longrightarrow \quad \langle E_{\mathbf{p}} \rangle_\delta = \langle E_{\mathbf{p}}^2 \rangle_\delta = 0.$$

In QKT, since our local equilibrium eliminates spin chemical potential, we need to add another **novel** matching condition for f_A : r

$$n_{\rm A}(x) = n_{{\rm A},0}(\alpha_0,\beta_0), \quad \Longrightarrow \quad \int_p 2\pi \delta(p^2) (f_{\rm A}^{<} - f_{{\rm A},\rm leq}^{<}) E_{\rm p} = 0.$$

which can also be derived from properties of SBE collision kernel:

$$\partial_{\mu} \int_{p} 2\pi \delta(p^{2}) G_{p} \mathcal{A}^{\mu}(x,p) = \int_{p} 2\pi \delta(p^{2}) G_{p} \mathcal{C}_{A}.$$
 Only possible choice: $\Leftrightarrow \quad \partial_{\mu} \mathcal{J}_{5}^{\mu}(x) = 0,$

Within the validity domain of gradient expansion, it simplifies the collision correction in Scenario (I):

$$\mathcal{O}(\partial) \ll \mathcal{O}(Te^4) \ll \mathcal{O}(T) \qquad \qquad \delta \mathcal{A}_{(I)}^{<,\mu}(X,p) = -2\pi\hbar\delta(p^2)S^{(u),\mu\alpha}C_{V,\alpha}[\delta f_V^{<}] + \mathcal{O}(\partial^2).$$

i.e. $Kn = \frac{\lambda}{L} \sim (Te^4)^{-1}\partial \ll 1$
which only depends on the off-eq. correction of vector distribution
It also demands at least $\delta f_A \sim O(\partial^2)$.

SF, S. Pu, 2408.09877

Shuo Fang(万顿), Collision corrections to spin polarization, 2024.11.11

 $\mathcal{J}_5^{\mu}(x) = \int 2\pi \delta(p^2) \mathcal{A}^{<,\mu}(x,p).$

Solving SBE for Scenario (II) (a) Using systematical gradient expansion, $f_{\rm A} = f_{\rm A, leq} + \delta f_{\rm A} = {\rm Kn} f_{\rm A}^{(1)} + {\rm Kn}^2 f_{\rm A}^{(2)} + \mathcal{O}({\rm Kn}^3),$ G.S. Denicol, D. Rischke, Axial dist. Lecture Notes in Phys. (2022) $\mathcal{C}_{\mathrm{A}}[\delta f_{\mathrm{A}}, f_{\mathrm{V,leq}}] = \mathrm{Kn}\mathcal{C}_{\mathrm{A}}^{(1)}[\delta f_{\mathrm{A}}, f_{\mathrm{V,leq}}] + \mathrm{Kn}^{2}\mathcal{C}_{\mathrm{A}}^{(2)}[\delta f_{\mathrm{A}}, f_{\mathrm{V,leq}}] + \mathcal{O}(\mathrm{Kn}^{3})$ $= \int_{m' \ k \ k'} W_{pk \to p'k'}(2\pi)^4 \delta(k'^2) \delta(k^2) \delta(p'^2) \delta(p^2) f_{\mathrm{V,leq}}^<(k') f_{\mathrm{V,leq}}^<(p') f_{\mathrm{V,leq}}^>(k) f_{\mathrm{V,leq}}^>(p)$ Axial Very special for spin $\delta f_A^{<}(p') - \frac{\delta f_A^{<}(p)}{f_{V,\text{leq}}^{<}(p')f_{V,\text{leq}}^{>}(p')} - \frac{\delta f_A^{<}(p)}{f_{V,\text{leq}}^{<}(p)f_{V,\text{leq}}^{>}(p)}$ collision kernel Gradient expansion: collision kernel! Differential-integral eq. (spin BE) $\mathcal{C}^{(1)}_{\Lambda}[\delta f_{\Lambda}, f_{V,\text{leg}}] = 0,$ \rightarrow Integral eq. $\begin{array}{l} \begin{array}{c} \text{Spin} \\ \text{Boltzmann eq.} \end{array} \quad & \hbar \frac{\hat{\partial}_{\mu} S_{(u)}^{\mu\alpha}(p)}{E_{\mathbf{p}}} u_{\alpha} \left(\hat{D} f_{\mathrm{V}}^{<}(p) \right)^{(1)} + \hbar \frac{\hat{\partial}_{\mu} S_{(u)}^{\mu\alpha}(p)}{E_{\mathbf{p}}} \hat{\nabla}_{\alpha} f_{\mathrm{V}}^{<,(0)}(p) \\ & \quad + L \left(\hat{D} f_{\mathrm{A}}^{<}(p) \right)^{(2)} + L \frac{p_{\perp}^{\mu}}{E_{\mathbf{p}}} \hat{\nabla}_{\mu} f_{\mathrm{A}}^{<,(1)} \ = \ \frac{\lambda^{2}}{E_{\mathbf{p}}} \mathcal{C}_{\mathrm{A}}^{(2)}[\delta f_{\mathrm{A}}, f_{\mathrm{V},\mathrm{leq}}], \end{array}$ → Linear eq. array ✓ Solvable! Coefficient functions to be determined from axial collision kernel From the l.h.s. of spin Boltzmann eq., it is sufficient to assume, $f_{A}^{<,(2)}(p) = -\frac{\hbar}{2} f_{V,leq}^{<}(p) f_{V,leq}^{>}(p) \left\{ \varphi_{A,\mathbf{p}}^{s,1} \frac{1}{\beta_0} \hat{\omega}^{\alpha} \hat{\nabla}_{\alpha} \beta_0 + ... + \varphi_{A,\mathbf{p}}^{v,1} \beta_0 \hat{\omega}^{\mu} \hat{\sigma}_{\mu}^{\alpha} p_{\langle \alpha \rangle} + ... \right\}$ So that the SBE reduces to, l.h.s. = $-\frac{\hbar}{2} f_{\mathrm{V,leq}}^{<}(p) f_{\mathrm{V,leq}}^{>}(p) \left[A_{\mathbf{p}} + B_{\mathbf{p}}^{\alpha} p_{\langle \alpha \rangle} + C_{\mathbf{p}}^{\alpha \rho} p_{\langle \alpha} p_{\rho \rangle} + D_{\mathbf{p}}^{\mu \alpha \lambda} p_{\langle \mu} p_{\alpha} p_{\lambda \rangle} \right],$ $\varphi_{\mathbf{A},\mathbf{p}}^{i} = \sum_{n=0}^{N_{\mathbf{A}}^{i}} \varepsilon_{\mathbf{A},n}^{i} \xi_{\mathbf{p}}^{(n)}(E_{\mathbf{p}}).$ r.h.s. = $\int_{p',k,k'} W_{pk \to p'k'}(2\pi)^4 \delta(k'^2) \delta(k^2) \delta(p'^2) \delta(p^2) f_{V,\text{leq}}^<(k') f_{V,\text{leq}}^<(p') f_{V,\text{leq}}^>(k) f_{V,\text{leq}}^>(p)$

SF, S. Pu, 2408.09877

 $\times \left[(\varphi_{A,\mathbf{p}}^{s,1} - \varphi_{A,\mathbf{p}'}^{s,1}) \frac{1}{\beta_0} \hat{\omega}^{\alpha} \hat{\nabla}_{\alpha} \beta_0 + (\varphi_{A,\mathbf{p}}^{s,2} - \varphi_{A,\mathbf{p}'}^{s,2}) \hat{\nabla}^{\alpha} \hat{\omega}_{\alpha} + ... \right]$ Solve it by choosing basis function.¹⁴

Solving SBE for Scenario (II) (b)

• The Spin BE now becomes the following linear eq. arrays:

• Within a simplest choice: (i) Polynomial basis (to simplify the collision integral); $\xi^{(r)}(E_p) = E_p^r$ (ii) Minimal truncation (to simplify solving of the linear eq. array).

$$N_{\rm A}^{{
m s},i}=1~,~N_{\rm A}^{{
m v},i}=N_{\rm A}^{{
m ts},i}=N_{\rm A}^{{
m tt}}=0.$$

Within the Hard Thermal Loop approximation we derive the collision integral. We finally get,

$$\delta \mathcal{A}_{(\mathrm{II})}^{<,\mu}(X,p) = -\hbar \pi p^{\mu} \delta(p^{2}) f_{\mathrm{V,leq}}^{<}(p) f_{\mathrm{V,leq}}^{>}(p) \frac{\beta^{2}}{e^{4} \ln e^{-1}} \mathcal{F}, \qquad \text{with} \\ \mathcal{F} = \left(E_{\mathbf{p}} - d_{1} \frac{1}{\beta_{0}} \right) d_{2} \omega^{\alpha} \nabla_{\alpha} \beta_{0} + \ldots + d_{4} \beta_{0} \omega^{\mu} \sigma_{\mu}^{\alpha} p_{\langle \alpha \rangle} + \ldots \\ \propto \boldsymbol{\tau_{spin}} \sim \frac{\mathbf{T}^{-1}}{e^{4} \ln e^{-1}}, \text{ proportional to spin relaxation time} \qquad + d_{7} \beta_{0}^{2} \epsilon^{\mu\nu\sigma\langle\rho} \sigma_{\mu}^{\alpha\rangle} u_{\sigma} \nabla_{\nu} \alpha_{0} p_{\langle \alpha} p_{\rho\rangle} + \ldots + d_{9} \beta_{0}^{3} \omega^{\langle \mu} \sigma^{\alpha \lambda\rangle} p_{\langle \mu} p_{\alpha} p_{\lambda}} \\ SF, S. Pu, 2408.09877 \qquad \text{Shuo Fang} (\overline{f}\overline{q}), \text{ Collision corrections to spin polarization, 2024.11.11} \qquad 15$$

Coupling independence in Scenario (I)

However, when utilizing Chapman-Enskog expansion in scenario (I):

$$\delta \mathcal{A}_{(\mathbf{I})}^{<,\mu}(X,p) = 2\pi\hbar\delta(p^2)\beta_0 \left[-g_1(E_{\mathbf{p}}) \frac{\epsilon^{\mu\nu\rho\sigma}p_\rho u_\sigma}{2E_{\mathbf{p}}} \nabla_\nu\alpha_0 - g_2(E_{\mathbf{p}}) \frac{\epsilon^{\mu\nu\rho\sigma}p_\rho u_\sigma}{2E_{\mathbf{p}}} \sigma_{\nu\alpha}p^\alpha \right]$$

The corrections are Coupling-Independent manifestly!

 $=\int_{\text{PCD}} C_{\text{ABCD}} \overline{\Delta}^{\mu}$

- Recall that in CKT: $S_{\chi}^{<,\mu}(p,X) = 2\pi\theta(u\cdot p) \left[\delta(p^2)p^{\mu}f_{\chi} + \delta(p^2)\hbar\chi \frac{\epsilon^{\mu\nu\alpha\beta}p_{\nu}u_{\alpha}}{2u\cdot p}(\Delta_{\beta}f_{\chi} - \mathcal{C}_{\beta}[f_{\chi}])\right]$

The collision part is, $S_{\chi,\mathcal{C}}^{<,\mu}(p,X) = -2\pi\theta(u\cdot p)\delta(p^2)\hbar\chi \frac{\epsilon^{\mu\nu\alpha\beta}p_{\nu}u_{\alpha}}{2u\cdot p}\mathcal{C}_{\beta}[f_{\chi}]$

$$|\mathcal{M}|^2 \delta f_p \sim \tau \tau^{-1} p \cdot \partial f_0 = p \cdot \partial f_0 \propto \tau^0.$$

Interaction cancellation

$$\delta m{r} ~pprox ~m{p}{2|m{p}|^3} imes \Delta m{p} = m{\Omega} imes \Delta m{p}$$

Physical origin: Coordinate *side-jump* due to *Berry curvature*

SF, S. Pu, 2408.09877

J.-Y. Chen, D.T. Son, M.A. Stephanov, PRL(2015)

Y. Hidaka, S. Pu, D.-L. Yang, PRD(2017) Shuo Fang(方硕), Collision corrections to spin polarization, 2024.11.11

Remark on $e \to 0$ limit: Boltzmann equation is **free-streaming** when $e \to 0$, then the **gradient expansion breaks down**! $\mathcal{O}(\partial) \ll \mathcal{O}(Te^4)$

 $\sim \int_{p' q q'} \delta \boldsymbol{r} \left(|\mathcal{M}|^2 \delta f_p \right) f_{p'} (1 - f_q) (1 - f_{q'})$

Pacific Spin 2024

Physical origin of spin polarization (I)

Spin polarization in medium is a *spin Hall effect* for spin transport, we probe the spin current as response to **electric fields**. It is illustrating to compare it with condensed matter community.

- Here we list the different contributions of spin polarization current, which is defined as

$$S^{\mu\rho\sigma}(x) = 4\epsilon^{\mu\nu\rho\sigma} \int_p \mathcal{A}_{\nu}^{<}(p,x) = 4\epsilon^{\mu\nu\rho\sigma} \int_p \frac{j_+^{<}(p,x) - j_-^{<}(p,x)}{2}$$

In **heavy ion physics**, the effective electric field comes from the anisotropy of the medium, and is defined in the phase space :

Effective electric field from medium anistropy

Such effective electric field is corrected by self-energies

$$\left[p^{\alpha}\xi_{\mu\alpha} + p^{\alpha}\omega_{\mu\alpha} - \partial_{\mu}(\beta\mu_{\chi})\right]\frac{\partial f^{0}_{\chi}}{\partial\varepsilon} \equiv E^{\text{eff}}_{\mu}\frac{1}{\varepsilon}\frac{\partial f^{0}_{\chi}}{\partial\varepsilon}$$

 $E^{\mu}_{\text{eff}} = \varepsilon p_{\alpha} \xi^{\mu\alpha} \to \varepsilon p_{\alpha} \xi^{\mu\alpha} \left[1 + \frac{g^2 T^2}{E^2} G_{\omega_1}(E_{\boldsymbol{q}}, \boldsymbol{q}) + \dots \right]$

In **condensed matter physics**, the electric field is an external classical source input in the table-based experiment:

$$J_{\mu}(x) = -\sigma_{\mu\nu}E^{\nu}(x),$$

N. Nagaosa, et al, RMP.82.1539

We probe the **phase-space spin current** in general in heavy ion physics.

SF, S. Pu, 2408.09877 SF, S. Pu, D.-L. Yang, PRD(2024)

Physical origin of spin polarization (II)

We consider the **coordinate space spin current** for illustration:

In condensed matter physics

- Spin phenomena in heavy ion collisions
- Quantum kinetic theory and spin transport
- Collision corrections by solving (spin) Boltzmann
 equations
- Summary

Summary and outlook

Summary

We have investigated the off-equilibrium corrections for fermion spin polarization in a hot electron plasma. Such collision sources mainly contain two parts in leading gradient:

- 1. Side-jump part: independent of interactions
- 2. Extrinsic part: proportional to **spin relaxation time**

Outlook

- 1. Reproduce the side-jump contribution from *linear response theory*;
- 2. Generalize to a real QCD plasma.

Welcome to Hefei and thanks for your attention!

