VLAST HEIC-Cube 在 PS 束流测试的分析结果

汇报人:张研硕 深测与核由子学国家重占实

核探测与核电子学国家重点实验室 中国科学技术大学

2023/12/14

VLAST 课题背景

- 2 样机的研制和组装
- **J** PS 束流分析结果

└ 总结和展望

课题背景介绍

课题背景

课题背景

高能成像量能器 HEIC

- 预期动态范围: 0.1 GeV~20 TeV;
- 主体材料: BGO 晶体;

BGO quantity	value	unit
Z/A	0.42065	mol/g
density	7.130	g/cm ³
minimum ionization	8.918	MeV/cm
nuclear interaction length	22.32	cm
nuclear collision length	13.49	cm
radiation length	1.118	cm
Molière radius	2.259	cm

- 若采用长晶体方案,将是 米量级的晶体 首次应用于实验探测;
- 若采用小晶块方案,则结构更易拓展, 簇射轮廓描述更简单和清晰,具有侧面 入射粒子重建的潜力;

样机组装和束流测试

HEIC-Cube 样机

HEIC-Cube 样机—电子学部分

** ** ** ** **

k 12 12 12 14

选取 APD 探测 BGO 产生的荧光信号,并由 电子学增益配合遮光片实现大动态范围。

前端电子学的正面及反面照片

HEIC-Cube 样机—大动态范围

LED 测试各通道之间的线性关系

HEIC-Cube 样机—探测器部分

连接电路板组成样机

样机整体结构

各个子探测器由不同的单位进行研制,完成后再组装进行 PS 和 SPS 的束流测试。

PS 束流测试

束流测试的触发方式

PS 测试数据分析

PS 测试数据分析

主要内容:

O 5 GeV/c Muon:

● 台基;

- MIPs 峰位; 12 GeV/c Pion:
 - 台基;
- 高低增益线性; ● 5 GeV/c Electron 等:
 - 有效事例筛选;
 - 能谱汇总;

Counts

192,686

232,844

34,600 +

each

Data type

positional

scanning

positional

scanning

central

incidence

Momentum

(GeV/c)

5

12

1, 2, 3, 4, 5

Particle

 μ^{-}

 π^{-}

 e^{-}

RunID

10004 ~ 10032

10045 ~ 10069

10155 ~ 10190

5 GeV/c Muon 台基

台基的典型拟合结果

5 GeV/c Muon 台基

不同通道的拟合中心值

不同通道的拟合标准差

不同通道的台基之间存在较大差异

Muon MIPs 筛选条件:

● 至少3层有信号;

200

300

400

500

600

700

800

ADC value

● 每层有1或2个击中;

拟合结果汇总

mip mpv

HH 通道的典型拟合结果

5 GeV/c Muon MIPs 峰位

mip mpv

100

382.6

101.1

Entries

Mean Std Dev

12 GeV/c Pion 台基

台基的典型拟合结果

12 GeV/c Pion 台基

不同通道的拟合中心值

不同通道的拟合标准差

不同通道的台基之间存在较大差异

Pion 与 Muon 台基差异

不同粒子台基的差异

12 GeV/c Pion 高低增益的线性

HL-HH 通道典型结果

拟合斜率汇总

其他通道的信号之间存在较为明显的串扰,用一次多项式的拟合效果较差

未经选择的电子能谱

每层的能量沉积分布

每块小晶体的能量阈值设为 5 MeV, 1 个 MIP 对应的能量设为 28 MeV

去掉低能端拖尾的能谱

每层的能量沉积分布

筛选条件: 某一事例中单层晶体内的能量沉积 > 2 MIPs, 层数 ≥ 3

5 GeV/c Electron

去掉中能区的计数低段

每个事例的击中数

能量最大的晶体位置分布

5 GeV/c Electron

经过筛选后的电子能谱

5 GeV/c 电子能谱

Total energy [MeV]

Electron summary

结果汇总

筛选前的电子能谱

筛选后的电子能谱

total_energy_ 1

结果汇总

RunID	energy	total counts	effective counts	fit center	fit sigma	FWHM	energy resolution
178, 179, 181, 182, 183	1000	44284	2132	791.23	94.53	224.33	11.95%
168, 169, 171, 172, 174, 176	2000	50554	5396	1588.08	166.68	394.88	10.50%
162, 163, 165, 166	3000	36499	6259	2365.62	239.95	569.64	10.14%
155, 156, 157, 159	4000	34604	7752	3106.42	315.90	750.62	10.17%
185, 186, 188, 189, 190	5000	38180	8631	3953.46	431.00	1021.02	10.90%

electron

electron

总结与展望

本报告主要对以下3个方面的内容进行介绍:

- HEIC-Cube 样机的研制和在 PS 的束流测试情况;
- 利用 Muon 和 Pion 的测试数据,标定量能器的基础参数;
- 利用刻度参数, 对电子能谱进行了初步分析;

近期工作计划:

- 结合 STK 的径迹信息,对电子事例做进一步的精细筛选;
- 结合蒙卡的模拟结果, 评估和优化电子能谱的筛选条件;
- 电子学通道之间存在较为严重的串扰,需要量化并去除;
- 选取合适的事例,分析 SPS 的测试数据,研究量能器参数 的稳定性,以及粒子直接击中 APD 时对输出信号的干扰;

远期规划

关于2024年的束流测试:

● 尝试制作一块 0.5 m × 1.5 m 的模块,测试其相关性能;

欢迎大家的批评和指正

Thank you for your attention!

